Long-term performance of Norway spruce in two provenance trials in Latvia





Norway spruce is economically important tree species in the Baltic Sea region, covering large areas and being productive in pure plantations. The species is often regenerated with planting. It is important to choose not only productive, but also robust reproductive material with good adaptability, hardiness and quality traits. The use of appropriate transferred provenances can be an option to increase forest productivity at final-harvest moment. Thus, it is necessary to know long-term fitness of different seedlots. We examined two provenances trials in Western and Eastern Latvia at the age of 34 and 29 years, respectively. We assessed effect of provenance on growth performance, stem quality, and budburst time. In milder climate of Western Latvia, superior growth showed northward-transferred later flushing provenances from the Carpathian Mountains and Lithuania, resulting in by up to 32 % higher yield than the trial mean. No advantages were observed for early flushing Western Russian seedlots facing southward transfer. Latvian provenances showed variable performance regarding productivity and stem quality. In harsher climate of Eastern Latvia, selection of productive local seedlots seemed reasonable option due to relatively lower probability of trees with stem defects comparing to transferred material.

Author Biography

Pauls Zeltiņš, Latvian State Forest Research Institute "Silava"

Forest tree breeding


Aitken, S. N.,Yeaman, S., Jason A. H., Wang, T. and Curtis-McLane, S. 2008. Adaptation, Migration or Extirpation: Climate Change Outcomes for Tree Populations. Evolutionary Applications 1 (1): 95–111. https://doi.org/10.1111/j.1752-4571.2007.00013.x.

Balut, S. and Sabor., J. 1993. Current State of Investigation in the International Provenance Est of Norway Spruce - IUFRO 1964/68 in Krynica /Site No 19, Poland/. Norway Spruce provenances and Breeding. Proc. S2.2-11 IUFRO conf.,1993: 6–33.

Bates, D., Mächler,M., Bolker, B. and Walker, S. 2014. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67 (1): 1–48.

Beuker, E. 1994. Adaptation to Climatic Changes of the Timing of Bud Burst in Populations of Pinus Sylvestris L. and Picea Abies (L.) Karst. Tree Physiology 14 (7_9): 961–70. https://doi.org/10.1093/treephys/14.7-8-9.961.

Boshier, D., Broadhurst, L., Cornelius, J., Gallo, L., Koskela, J., Loo, J., Petrokofsky, G. and St Clair, B. 2015. Is Local Best? Examining the Evidence for Local Adaptation in Trees and Its Scale. Environmental Evidence 4 (1): 20. https://doi.org/10.1186/s13750-015-0046-3.

Budeanu, M., Şofletea, N. and Pârnuţǎ, G. 2012. Testing Romanian Seed Sources of Norway Spruce (Picea Abies): Results on Growth Traits and Survival at Age 30. Annals of Forest Research 55 (1): 43–52.

Christensen, R.H.B. 2015. Ordinal - Regression Models for Ordinal Data. R Package Version 2015.6-28.

Danusevicius, D. and Gabrilavicius, R. 2001. Variation in Juvenile Growth Rhythm among Picea Abies Provenances from the Baltic States and the Adjacent Regions. Scandinavian Journal of Forest Research 16 (4): 305–17. https://doi.org/10.1080/713785149.

Danusevicius, D. and Persson, B. 1998. Phenology of Natural Swedish Populations of Picea Abies as Compared with Introduced Seed Sources. Forest Genetics 5: 211–20.

Fowler, D. P. and Coles, J.F. 1978. Norway Spruce Provenance Experiments in the Maritimes Region of Canada. Forestry 56: 155–160. https://doi.org/10.5558/tfc56155-4.

Gailis, A. 1993. Norway Spruce Provenances in Latvia. Norway Spruce provenances and Breeding. Proc. S2.2-11 IUFRO conf.,1993: 44–49.

Giertych, M. 2007. Genetics. In: M. G. Tjoelker, A. Boratyński and W. Bugała (Editors), Biology and Ecology of Norway Spruce. Springer Netherlands, Dordrecht, p. 115–155.

Gömöry, D., Longauer, R., Hlásny, T., Pacalaj, M., Strmeň, S. and Krajmerová, D. 2012. Adaptation to Common Optimum in Different Populations of Norway Spruce (Picea Abies Karst.). European Journal of Forest Research 131 (2): 401–11. https://doi.org/10.1007/s10342-011-0512-6.

Hannerz, M. and Westin, J. 2005. Autumn Frost Hardiness in Norway Spruce plus Tree Progeny and Trees of the Local and Transferred Provenances in Central Sweden. Tree Physiology 25 (9): 1181–1186. https://doi.org/10.1093/treephys/25.9.1181.

Harris, I., Jones, P.D., Osborn, T.J. and Lister, D.H. 2014. Updated High-Resolution Grids of Monthly Climatic Observations - the CRU TS3.10 Dataset. International Journal of Climatology 34 (3): 623–642. https://doi.org/10.1002/joc.3711.

Hynynen, J., Niemisto, P., Vihera-Aarnio, A., Brunner, A., Hein, S. and Velling, P. 2010. Silviculture of Birch (Betula Pendula Roth and Betula Pubescens Ehrh.) in Northern Europe. Forestry 83 (1): 103–119. https://doi.org/10.1093/forestry/cpp035.

Holst, H. 1963. Growth of Norway Spruce (Picea Abies L. Karst.) Provenances in Eastern North America. http://www.cfs.nrcan.gc.ca/bookstore_pdfs/24642.pdf.

Howe, G. T., Aitken, S.N., Neale, D.B., Jermstad, K.D., Wheeler, N.C. and Chen., T.H.H. 2003. From Genotype to Phenotype: Unraveling the Complexities of Cold Adaptation in Forest Trees. Canadian Journal of Botany 81 (12): 1247–1266. https://doi.org/10.1139/b03-141.

Jansons, Ā., Donis, J., Danusevičius, D. and Baumanis, I. 2015. Differential Analysis for next Breeding Cycle for Norway Spruce in Latvia. Baltic Forestry 21 (2): 285–297.

Keskitalo, E.C.H., Bergh, J., Felton, A., Björkman, C., Berlin, M., Axelsson, P., Ring, E., Ågren, A., Roberge, J.M.,Klapwijk, M.J. and Boberg, J. 2016. Adaptation to Climate Change in Swedish Forestry. Forests 7 (2): 28. https://doi.org/10.3390/f7020028.

Krutzsch, P. 1974. The IUFRO 1964-68 Provenance Test with Norway Spruce (Picea Abies (L.) Karst.). Silvae Genetica 23: 58–62.

Laiviņš, M. and Melecis, V. 2003. Bio-Geographical Interpretation of Climate Data in Latvia: Multidimensional Analysis. Acta Universitatis Latviensis 654: 7–22.

Langvall, O. 2011. Impact of Climate Change, Seedling Type and Provenance on the Risk of Damage to Norway Spruce (Picea Abies (L.) Karst.) Seedlings in Sweden due to Early Summer Frosts. Scandinavian Journal of Forest Research 26: 56–63. https://doi.org/10.1080/02827581.2011.564399.

Leinonen, I. and Hänninen, H. 2002. Adaptation of the Timing of Bud Burst of Norway Spruce to Temperate and Boreal Climates. Silva Fennica 36 (3): 695–701. https://doi.org/10.14214/sf.534.

Lenth, R.V. 2016. Least-Squares Means: The R Package Lsmeans. Journal of Statistical Software 69 (1): 1–33. https://doi.org/10.18637/jss.v069.i01.

Liepa, I.1996. Pieauguma Mācība [Increment Science]. LLU, Jelgava, (in Latvian)

Lindner, M., Garcia-Gonzalo, J., Kolström, M., Green, T., Reguera, R., Maroschek, M., Seidl, R., Lexer, M.J., Netherer, S., Schopf, A., Kremer, A., Delzon, S., Barbati, A., Marchetti, M., Corona, P. 2008. Impacts of Climate Change on European Forests and Options for Adaptation. http://www.metsantutkimuslaitos.fi/tapahtumat/2009/JFNW2009/Lindner.pdf.

Long, J. S. 1997. Regression Models for Categorical and Limited Dependent Variables. Sage Publications, London.

Makinen, H., Ojansuu, R., Sairanen, P. and Yli‐Kojola, H. 2003. Predicting Branch Characteristics of Norway Spruce (Picea Abies (L.) Karst.) from Simple Stand and Tree Measurements. Forestry 76 (5): 525–546. https://doi.org/10.1093/forestry/76.5.525.

Matyas, C. 1994. Modeling Climate Change Effects with Provenance Test Data. Tree Physiology 14 (7–9): 797–804. https://doi.org/10.1093/treephys/14.7-8-9.797.

Mullin, T. J., Andersson, B., Bastien, J.C., Beaulieu, J., Burdon, R.D, Dvorak, W.S., King, J.N., Kondo, T., Krakowski, J. and Lee, S.J. 2011. Economic Importance, Breeding Objectives and Achievements. In: C. Plomion, J. Bousquet and C. Kole (Editors), Genetics, Genomics and Breeding of Conifers. Edenbridge Science Publishers and CRC Press, p. 40-127.

Persson, A. and Persson, B. 1992. Survival, Growth and Quality of Norway Spruce (Picea Abies (L.) Karst) Provenances at the Three Swedish Sites of the IUFRO 1964/68 Provenance Experiment. Department of Forest Yield Research, Swedish University of Agricultural Sciences, Garpenberg, 67 pp.
Persson, B. and Persson, A. 1997. Variation in Stem Properties in a IUFRO 1964/1968 Picea Abies Provenance Experiment in Southern Sweden. Silvae Genetica 46 (2–3): 94–101.

R Core Team. 2016. R: A Language and Environment for Statistical Computing. https://www.r-project.org/.

Rone, V. 1984. Pirmie Egļu Provenienču Vērtēšanas Rezultāti Latvijā [First results of spruce geographical ecotype evaluation in Latvia]. Jaunākais Mežsaimniecībā 26: 33–38, (in Latvian)

Skroppa, T. and Magnussen, S. 1993. Provenance Variation in Shoot Growth Components of Norway Spruce. Silvae Genetica 42 (2–3): 111–120.

Søgaard, G., Fløistad, I.S., Granhus, A., Hanssen, K.H., Kvaalen, H., Skrøppa, T. and Steffenrem, A. 2011. Lammas Shoots in Spruce - Occurrence, Genetics and Climate. In: A. Granhus, K. H. Hanssen and G. Søgaard (Editors), Forest Management and Silviculture in the North - Balancing Future Needs. Skog og landskap, Stjørdal., p. 57–58.

Suvanto, S., Nöjd, P.,Henttonen, H.M., Beuker, E. and Mäkinen,H. 2016. Geographical Patterns in the Radial Growth Response of Norway Spruce Provenances to Climatic Variation. Agricultural and Forest Meteorology 222: 10–20. https://doi.org/10.1016/J.AGRFORMET.2016.03.003.

Teuffel, K. Von and Baumgarten, M. 2004. Present Distribution of Secondary Norway Spruce in Europe. In: H. Spieker, J. Hansen, E. Klimo, J.P. Skovsgaard, H. Sterba and K. Von Teuffel (Editors), Norway Spruce Conversion—Options and Consequences. EFI, p. 11–34.

Ulbrichová, I., Podrázský, V., Beran, F., Zahradník, D., Fulín, M., Procházka, J. and Kubeček, J. 2015. Picea Abies Provenance Test in the Czech Republic after 36 Years - Central European Provenances. Journal of Forest Science 61 (11): 465–477. https://doi.org/10.17221/23/2015-JFS.

Wang, T., Hamann, A., Yanchuk, A., O’neill, G.A. and Aitken, S.N. 2006. Use of Response Functions in Selecting Lodgepole Pine Populations for Future Climates. Global Change Biology 12 (12): 2404–2416. https://doi.org/10.1111/j.1365-2486.2006.01271.x.

Westin, J. and Haapanen, M. 2013. Norway Spruce – Picea Abies (L.) Karst. In: T.J. Mullin and S.J. Lee (Editors), Best Practice for Tree Breeding in Europe. Skogforsk, Uppsala. p. 29–47.

Xiong, J. 2010. Genetic Analysis of Forking Defects in Loblolly Pine. North Carolina State University.

Zeltiņš, P., Katrevičs, J., Gailis, A., Maaten, T., Jansons, J. and Jansons, Ā. 2016. Stem Cracks of Norway Spruce (Picea Abies (L.) Karst.) Provenances in Western Latvia. Forestry Studies 65 (1): 57–63. https://doi.org/10.1515/fsmu-2016-0012.

Zobel, B.J. and Jett, J.B. 1995. Genetics of Wood Production. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79514-5.

Zubizarreta-Gerendiain, A., Gort-Oromi, J., Mehtätalo, L., Peltola, H., Venäläinen, A. and Pulkkinen, P. 2012. Effects of Cambial Age, Clone and Climatic Factors on Ring Width and Ring Density in Norway Spruce (Picea Abies) in Southeastern Finland. Forest Ecology and Management 263: 9–16. https://doi.org/10.1016/j.foreco.2011.09.011.



How to Cite

Zeltiņš, P., Gailis, A., & Zariņa, I. (2021). Long-term performance of Norway spruce in two provenance trials in Latvia. Baltic Forestry, 27(1). https://doi.org/10.46490/BF195



Forest Tree Breeding