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Abstract 
The breeding of economically important forest tree species in the Baltic Sea region has contributed notably to the 

availability of quality wood for bioeconomy. Accordingly, the altered stand dynamics of improved trees should be identified 
and incorporated in growth models to accurately reflect these gains. Such advanced models can be used for assessment of 
different alternatives, e.g. strategies for increased carbon sequestration. 

We tested and modified dynamic forms of the King-Prodan height growth function based on the remeasured National 
Forest Inventory plots in Latvia to predict the growth of improved Scots pine, Norway spruce and silver birch forest 
reproductive material (FRM) categories ‘qualified’ and ‘tested’ using height measurements from progenies of 371, 390, and 
690 open-pollinated families, respectively. Both categories had steeper growth trajectories at young age compared to an 
unmodified function. Growth of category ‘tested’ for pine and birch exceeded that of category ‘qualified’ across the modelled 
age range, while trajectories mainly overlapped for spruce on lower site indices. The functions with FRM category-specific 
multipliers more accurately reflect the actual growth of improved stands, advancing planning of timely management activities 
like thinning. The single model with category-specific set of multipliers may be easy applicable in practice or incorporated in 
growth simulators without increased complexity for end-users. However, the predictions are limited to the sites with medium 
and high site indices, where improved planting stock is typically used. 

Keywords: GADA approach, dynamic modelling, tree breeding, FRM categories 

Introduction 
Scots pine (Pinus sylvestris L.), Norway spruce (Pi-

cea abies (L.) Karst.), and silver birch (Betula pendula 
Roth) are commercially the most important forest tree spe-
cies in the eastern Baltic region, and breeding program-
mes for them have been ongoing since the middle of the 
20th century. Currently, almost 100% of Scots pine, 75% 
of Norway spruce, and 37% of silver birch forest repro-
ductive material (FRM) being produced are genetically 
improved – in categories ‘qualified’ and ‘tested’ in Latvia 
(Oficiālās statistikas portāls 2022). In the region, estima-
ted genetic gains with respect to growth and production 
reach 10–35% over unimproved material depending on 
the trait and improvement level (Rosvall et al. 2002, Ru-
otsalainen 2014, Haapanen et al. 2016, Liziniewicz and 
Berlin 2019, Gailis et al. 2020). The use of genetically 
improved FRM has been evaluated to be financially pro-

fitable at final harvest (Ahtikoski 2000, Ahtikoski et al. 
2012, Jansons et al. 2015, Zeltiņš et al. 2018), as well as 
during the first commercial thinning (Gailis et al. 2020) 
and when contributing to carbon sequestration (Ahtikoski  
et al. 2020). 

Reliable long-term estimates of forest develop-
ment are of great importance for planning management 
and evaluating alternative management options (Fahlvik 
and Nyström 2006, Ahtikoski et al. 2012). Growth and 
yield models are commonly used to describe and pre-
dict the growth of forests, yet usually based on extensive 
measurement of naturally developed and genetically un-
improved stands (Gould et al. 2008). The substantial in-
crease in production due to tree breeding suggests that 
existing growth models might be revised to incorporate 
genetic gains (Rehfeldt et al. 1991, Sabatia 2011, Egbäck  
et al. 2017). 
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Growth models for genetically improved material 
in the Baltic Sea region are still lacking. In Latvia, forest 
growth and yield tables have been used as a common prac-
tice to predict growth, yet calculations are commonly based 
on data from once surveyed sample plots, of which the ma-
jority were established in the 1960s and 70s (Matuzānis 
1985). Since then increase in the forest growth have been 
observed not only due to genetic improvements, but largely 
explained by improved silvicultural practices and changes 
in environmental conditions like temperature, precipita-
tion and increased nitrogen decomposition (Solberg et al. 
2009, Kauppi et al. 2014, Henttonen et al. 2017, Etzold et 
al. 2020, Appiah Mensah et al. 2021). In the last decades, 
valuable data from the National Forest Inventory (NFI) 
have become available for building and calibrating new 
up-to-date growth functions (Donis et al. 2020). However, 
the establishment method for many forest stands is unclear, 
in most cases being the natural regeneration of unimproved 
material. Lack of accurate reflection of the growth of im-
proved material in models may result in suboptimal forest 
management (Adams et al. 2006). 

Appropriate growth models are becoming more im-
portant as the area planted with improved material is in-
creasing, and the genetic gain resulting from improvement 
programmes also increases (Egbäck et al. 2017). Devel-
opment of new functions for improved trees usually has 
limited applicability due to the lack of available repeated 
measurements up to the final harvest age (Joo et al. 2020). 
Hence, commonly used modifications of the existing mod-
els intended for unimproved trees are adjustment of site 
index (Buford and Burkhart 1987) or application of genetic 
multipliers (Carson et al. 1999, Kimberley et al. 2015). We 
chose the genetic multiplier approach to quantify height 
growth differences between improved and unimproved 
trees. Multipliers are commonly used to modify coeffi-
cients of an existing (reference) model built on empirical 
data from genetically unimproved trees, when limited data 
of improved material from progeny trials are available (Re-
hfeldt et al. 1991, Carson et al. 1999, Gould et al. 2008, 
Gould and Marshall 2010, Kimberley et al. 2015, Deng et 
al. 2020). Still, unlike the common approach to quantify 
genetic gains of different genetic entries, we introduced 
forest reproductive material category-specific multipliers 
for improved categories ‘qualified’ and ‘tested’ with the 
aim to apply them straightforward into practice. 

Therefore, our aim was to test a dynamic generalized 
algebraic difference approach (GADA) form of the King-
Prodan height growth functions (Krumland and Eng 2005) 
previously calibrated from the remeasured National Forest 
Inventory (NFI) plots in Latvia (representing mainly unim-
proved material) to better predict the growth of improved 
FRM categories ‘qualified’ and ‘tested’ with different lev-
els of genetic improvement. 

Materials and methods 
The study comprised tree height data from the re-mea-

sured open pollinated progeny trials of Scots pine, Nor-
way spruce and silver birch in Latvia (55°40’–58°05’ N, 
20°58’–28°14’ E) (Figure 1). Age of the height measure-
ments varied from 8 to 42 years, inventories being done 
two to four times per trial (Table 1). 

The trials were established at the sites suitable for 
the species of interest. Scots pine sites could be character-
ized with relatively poor, sandy soil corresponding to the 
Vacciniosa forest type (Buss 1997). Norway spruce was 
planted in mesotrophic mineral soils with normal moisture 
regime (Hylocomiosa or Oxalidosa forest type). For silver 
birch, both trials were planted on silty dry soils in former 
agricultural land with mesotrophic conditions. Scots pine 
families were planted in 10- to 100-tree block plots in 
5- to 8 replications using 1- to 2-year-old seedlings; ini-
tial spacing was 2 × 1 or 2 × 1.5 m. For Norway spruce, 
3-year-old bare rooted seedlings were planted in 10 to 24 
tree family block-plots with initial spacing varying from 
1.5 × 3 m to 2.5 × 2.5 m. Silver birch trails had random-
ized block design of single tree plots in 10 to 93 replica-
tions with an initial spacing of 2 × 2.5 m. In total, proge-
nies from 371, 390, and 690 families of Scots pine, Norway 
spruce and silver birch, respectively, were represented  
in the trials. 

The mean annual temperature in Latvia rang-
es from +5.7°C in the more continental eastern part to 
+7.5…+7.9°C on the Baltic Sea coast. The mean monthly 
temperature ranges from –3.1°C in February to +17.8°C in 
July. The mean annual precipitation in Latvia is 685 mm, 
with July and August being the wettest months (76–77 mm) 
and April being the driest month (36 mm) (Klimata Portāls 
2020). 

Figure 1. Locations of the progeny trials in Latvia with available tree height measurements for model testing and modifications

Scots pine Norway spruce Silver birch
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The modelling approach 
As the category ‘tested’, 10% of families (stan-

dard selection intensity; Jansons et al. 2015) with the  
highest mean height were selected in each trial, 
while the other 90% of families were assigned cat-
egory ‘qualified’ (Table 1). The GADA form of the 
King-Prodan equation was used (Krumland and  
Eng 2005):
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where 

H1 is the height at the beginning of the forecast period, m;  

H2 is the height at the end of the forecast period, m;  

A1 is the breast height age at the beginning of the forecast period, years;  

A2 is the breast height age at the end of the forecast period, years; and  

b1, b2, b3 are empirical coefficients.  

Difference between biological and breast height age assumed to be 4, 6, and 3 years for 

Scots pine, Norway spruce, and silver birch, respectively.  

We used the empirical coefficients b1, b2 and b3 of the height growth function previously 

approximated from the data of the National Forest Inventory (Table 2) as a part of Latvian State 

Forest Research Institute ‘Silava’ forest research long-term prognosis model AGM (Donis et 

al. 2018, 2020, Donis and Šņepsts 2019). The inclusion of the breeding effect in the equation 

was applied by introducing FRM as a fixed factor (‘qualified’ or ‘tested’). Further, different 

combinations of the factor-specific genetic multipliers (g, g1, g2, g3) were added and tested in 

front of the coefficients b1, b2 and b3 (Supplementary 1) in the part of the reference GADA 

function that has been resolved from the site-specific empirical coefficients a1 = b1, 

a2 = b2 + b3X, and a3 = X in the base equation (Krumland and Eng 2005):  

𝐻𝐻 � 1.3 �  𝐴𝐴��
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We did not adjust coefficients b1, b2 and b3 in the solution of X0 of unknown environmental 

conditions X:  
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The theoretical variable X includes the number of unobserved environmental effects (Sharma 

et al. 2017, Cieszewski and Bailey 2000), hence assuming a similar impact on the two 

categories of FRM in the same trial.  

 

Table 2 

 

,	 (1)

where
H1 is the height at the beginning of the forecast period, m; 
H2 is the height at the end of the forecast period, m; 
A1 is the breast height age at the beginning of the forecast 
period, years; 

A2 is the breast height age at the end of the forecast period, 
years; and 
b1, b2, b3 are empirical coefficients. 

Difference between biological and breast height age 
assumed to be 4, 6, and 3  years for Scots pine, Norway 
spruce, and silver birch, respectively. 

We used the empirical coefficients b1, b2 and b3 of the 
height growth function previously approximated from the 
data of the National Forest Inventory (Table 2) as a part 
of Latvian State Forest Research Institute ‘Silava’ forest 
research long-term prognosis model AGM (Donis et al. 
2018, 2020, Donis and Šņepsts 2019). The inclusion of the 
breeding effect in the equation was applied by introduc-
ing FRM as a fixed factor (‘qualified’ or ‘tested’). Further, 
different combinations of the factor-specific genetic multi-
pliers (g, g1, g2, g3) were added and tested in front of the co-
efficients b1, b2 and b3 (Supplementary 1) in the part of the 
reference GADA function that has been resolved from the 

Species Trial Age
Category: tested Category: qualified

Mean (m) SD (m) Min (m) Max (m) N Mean (m) SD (m) Min (m) Max (m) N
Scots 
pine

No 18 26 11.5 1.1 8.9 14 205 11.2 1.1 7.9 16 1023
34 15.5 1.8 11 20 205 15.1 1.7 9.7 21 1023

No 19 17 7.87 0.9 5.4 10 110 6.59 1 2.8 10 1071
23 11.4 1.1 7.5 14 110 10.1 1.3 5.1 20 1071

No 24 27 15.3 0.9 12 18 152 14.2 1.1 9.3 17 841
42 23.6 1.7 17 27 152 22 2.2 14 27 841

No 31 26 15.2 1 13 18 133 14.3 1.1 11 18 956
39 21.2 1.7 16 24 133 20.1 1.9 14 25 956

No 39 10 6.26 0.6 4.1 8.1 193 5.61 0.8 1.9 9.6 1409
21 14.4 1.4 7 17 193 13.5 1.3 6.4 17 1409

Zvirgzde 21 9.4 1.1 7 13 82 8.34 1.3 3.9 13 539
28 13.9 1.6 10 18 82 12.5 2 6.6 18 539

Norway 
spruce

Andrupene 17 6.13 1.3 1.2 10 301 5 1.5 0.6 9.6 2845
21 9.6 1.7 2.2 14 301 8.37 2 0.8 14 2845

Jelgava 8 1.75 0.4 0.5 2.6 71 1.51 0.4 0.3 2.7 528
9 2.37 0.6 0.6 3.6 101 2.01 0.6 0.5 3.6 754

10 3.14 0.8 1 4.8 89 2.71 0.7 0.7 4.5 683
12 4.88 0.9 2.6 6.6 69 4.16 0.9 1 6.4 521

Kuldīga 12 3.07 1 0.7 5.2 266 2.23 0.9 0.3 5.4 2623
13 3.52 1.1 0.8 5.7 379 2.63 1 0.4 6 3372
14 4.07 1.2 1.2 6.5 379 3.07 1.1 0.5 6.8 3371
15 4.71 1.2 1.7 7.5 265 3.62 1.2 0.8 7.3 2622

Priedaine 17 8.57 1.7 2.3 12 194 7.23 2.1 1 13 1253
26 13.2 2.5 3.4 18 194 11.8 3 2 18 1253

Rembate 10 2.88 0.7 0.7 4.7 231 2.08 0.7 0.4 4.5 1889
11 3.69 0.8 0.9 5.6 292 2.74 0.9 0.6 5.5 2931
12 4.49 0.9 1.2 6.6 292 3.43 1.1 0.7 6.6 2931
13 5.31 1 1.6 7.6 230 4.15 1.2 0.9 7.9 1888

Silver 
birch

Taurene 10 7.32 1.3 2.8 10 759 6.79 1.3 2.6 11 6940
14 12.5 1.6 6.2 16 1263 11.6 1.7 4.5 16 10949
22 20.1 1.5 11 23 500 18.6 2.1 11 23 4051

Ukri 10 7.4 1.2 3.3 11 728 6.72 1.2 2.6 12 5801
14 13.6 1.5 7.8 18 1555 12.6 1.7 4.2 17 10748
22 20 1.4 13 23 823 19 1.7 11 23 4932

Table 1. Summary statistics of height measurement data from the progeny trials 

Note: SD – standard deviation, Min – minimum value, Max – maximum value, N – number of measured trees.
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where g1, g2 and g3 are the FRM category-specific genetic multipliers.  

Final fitted functions for Scots pine and silver birch had all three multipliers 

(Supplementary 1, equation 8; Supplementary 2), while inclusion of multipliers g2 and g3 

showed the best fit statistics for Norway spruce (Supplementary 1, equation 5; 

Supplementary 2).  

For both FRM categories of all three species, the estimated genetic multipliers were 

statistically significant (p < 0.01). Overall, modified models fitted the calibration data with high 

accuracy (R2adj ≥ 0.918), with Norway spruce having the smallest errors (RMSE = 0.717 m, 

AMRES = 0.44 m) (Table 3). We did not observe any trends in residuals over predicted height 

for Scots pine and silver birch, but there was a slight overestimation for higher trees and an 

underestimation for smaller trees for Norway spruce (Figure 2). The same tendencies were 

observed for the validation data. Still, prediction statistics of the modified functions 

(R2adj = 0.908, RMSE = 1.351 m, AMRES = 0.977 for Scots pine; R2adj = 0.943, 

RMSE = 0.738 m, AMRES = 0.445 m for Norway spruce; R2adj = 0.922, RMSE = 1.100 m, 

AMRES = 0.846 m for silver birch) indicated a good fit to the validation data (Table 3).  

Table 3 

Figure 2 

For comparison, a test of an unmodified (reference) model with validation data from 

progeny trials showed various results for different species. For Scots pine and Norway spruce, 

the prediction precision was slightly lower compared to the modified function yet good 

(R2adj = 0.891...0.912). On the contrary, the model for silver birch indicated substantially lower 

prediction power (RMSE = 2.222 m, AMRES = 1.935 m, R2adj = 0.683) with a distinct trend to 

underestimate tree height for smaller trees (Figure 2). Less pronounced yet similar tendency 

was indicated for Scots pine. For Norway spruce, the unmodified model tended to overestimate 

the height of larger trees (Figure 2).  

The drawn height-age curves indicated differences in the height growth of improved and 

unimproved trees (Figure 3). In general, both improved FRM categories – ‘qualified’ and 

‘tested’ – had curves above the reference model except for the highest site indices (H100 ≥ 33 m) 

indicating overestimation when the genetic multipliers are not used. For Scots pine and silver 

,	 (4)

where g1, g2 and g3 are the FRM category-specific genetic 
multipliers. 

Final fitted functions for Scots pine and silver birch 
had all three multipliers (Supplementary 1, equation 8; 
Supplementary 2), while inclusion of multipliers g2 and g3 
showed the best fit statistics for Norway spruce (Supple-
mentary 1, equation 5; Supplementary 2). 

For both FRM categories of all three species, the 
estimated genetic multipliers were statistically signifi-
cant (p < 0.01). Overall, modified models fitted the cal-
ibration data with high accuracy (R2

adj ≥ 0.918), with Nor-
way spruce having the smallest errors (RMSE = 0.717 m,  
AMRES = 0.44 m) (Table 3). We did not observe any 
trends in residuals over predicted height for Scots pine 
and silver birch, but there was a slight overestimation for 
higher trees and an underestimation for smaller trees for 
Norway spruce (Figure 2). The same tendencies were ob-
served for the validation data. Still, prediction statistics of 
the modified functions (R2

adj = 0.908, RMSE = 1.351 m,  
AMRES = 0.977 for Scots pine; R2

adj = 0.943, 
RMSE = 0.738 m, AMRES = 0.445 m for Norway spruce; 
R2

adj = 0.922, RMSE = 1.100 m, AMRES = 0.846 m for silver 
birch) indicated a good fit to the validation data (Table 3). 

For comparison, a test of an unmodified (reference) 
model with validation data from progeny trials showed var-
ious results for different species. For Scots pine and Norway 
spruce, the prediction precision was slightly lower compared 
to the modified function yet good (R2

adj = 0.891...0.912). 
On the contrary, the model for silver birch indicated sub-
stantially lower prediction power (RMSE = 2.222 m, AM-
RES = 1.935 m, R2

adj = 0.683) with a distinct trend to un-
derestimate tree height for smaller trees (Figure 2). Less 
pronounced yet similar tendency was indicated for Scots 
pine. For Norway spruce, the unmodified model tended to 
overestimate the height of larger trees (Figure 2). 

The drawn height-age curves indicated differences in the 
height growth of improved and unimproved trees (Figure 3). 
In general, both improved FRM categories – ‘qualified’ and 
‘tested’ – had curves above the reference model except for the 
highest site indices (H100 ≥ 33 m) indicating overestimation 
when the genetic multipliers are not used. For Scots pine 
and silver birch, the curves of the category ‘tested’ were 
slightly above the ones for ‘qualified’ material, while both 
lines overlapped for spruce in lower site indices. The most 
distinct differences between improved and unimproved 
tree height growth were observed in silver birch, for 
which both measured height-age trajectories and projected 
curves had much steeper growth at young age compared to 
unmodified function based solely on NFI data (Figure 3). 
For all the studied species, the underlaying data coverage of 
height-age series for improved trees support drawn curves 
for rather the height site indices (H100 > 21 m) (Figure 3). 

site-specific empirical coefficients a1 = b1, a2 = b2 + b3X, 
and a3 = X in the base equation (Krumland and  
Eng 2005):
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The theoretical variable X includes the number of unobserved environmental effects (Sharma 

et al. 2017, Cieszewski and Bailey 2000), hence assuming a similar impact on the two 

categories of FRM in the same trial.  

 

Table 2 

 

Data analysis 
All data analysis was conducted in R, a software environment for statistical computing 

and graphics, v. 4.0.3 (R Core Team 2020).  

For each studied tree species, modified functions with different combinations of included 

multipliers were tested (Supplementary 1) and the best-fit model was selected using Akaike’s 

information criterion (AIC). The fitted models were evaluated using the adjusted coefficient of 

determination (R2adj), absolute mean residual (AMRES), and the root mean squared error 

(RMSE) (Montgomery et al. 2012). We did graphical analysis of trends in residuals plotted 

against predicted tree height and drawn height-age curves overlaid on the measured height data. 

For testing predictive accuracy of the final fitted models, we split the datasets (both ‘qualified’ 

and ‘tested’) into calibration (training) and validation data (70 and 30%, respectively). In 

addition, we used validation data also to test prediction accuracy of the unmodified reference 

model. The predictions were evaluated using R2adj, AMRES, and RMSE.  

 

Results  
The best fit was achieved when accounting for the breeding effect in the equation by 

introducing a category (‘qualified’ or ‘tested’) dependent genetic multiplier in front of the 

coefficients b1, b2 and b3 in the part of the function that has been resolved from the empirical 

coefficients a1 and a2 of the base equation:  

,	 (2)

We did not adjust coefficients b1, b2 and b3 in the solu-
tion of X0 of unknown environmental conditions X: 
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𝐻𝐻� � 1.3 � 𝐴𝐴���∙��

𝑔𝑔� ∙ 𝑏𝑏� � 𝑔𝑔� ∙ 100 𝑏𝑏�
𝐴𝐴1
𝑏𝑏1

𝐻𝐻1 � 1.3 � 𝑏𝑏2

100𝑏𝑏3 � 𝐴𝐴1
𝑏𝑏1 �

𝐴𝐴1
𝑏𝑏1

𝐻𝐻1 � 1.3 � 𝑏𝑏2

100𝑏𝑏3 � 𝐴𝐴1
𝑏𝑏1 𝐴𝐴���∙��

,
, �4� 

,	 (3)

The theoretical variable X includes the number of 
unobserved environmental effects (Sharma et al. 2017, 
Cieszewski and Bailey 2000), hence assuming a similar 
impact on the two categories of FRM in the same trial. 

Species b1 b2 b3

Scots pine 1.15697 –27.0403 16.4512
Norway spruce 1.28394 –47.3493 23.60081
Silver birch 1.257 –47.475 21.726

Table 2. Reference height growth model coefficients b1, b2 
and b3 for the King-Prodan generalized algebraic difference 
approach form calibrated using National Forest Inventory data 
in Latvia (Donis et al. 2018) 

Data analysis
All data analysis was conducted in R, a software en-

vironment for statistical computing and graphics, v. 4.0.3 
(R Core Team 2020). 

For each studied tree species, modified functions with 
different combinations of included multipliers were tested 
(Supplementary 1) and the best-fit model was selected us-
ing Akaike’s information criterion (AIC). The fitted models 
were evaluated using the adjusted coefficient of determina-
tion (R2

adj), absolute mean residual (AMRES), and the root 
mean squared error (RMSE) (Montgomery et al. 2012). We 
did graphical analysis of trends in residuals plotted against 
predicted tree height and drawn height-age curves overlaid 
on the measured height data. For testing predictive accu-
racy of the final fitted models, we split the datasets (both 
‘qualified’ and ‘tested’) into calibration (training) and val-
idation data (70 and 30%, respectively). In addition, we 
used validation data also to test prediction accuracy of the 
unmodified reference model. The predictions were evalu-
ated using R2

adj, AMRES, and RMSE. 

Results 
The best fit was achieved when accounting for the 

breeding effect in the equation by introducing a category 
(‘qualified’ or ‘tested’) dependent genetic multiplier in 
front of the coefficients b1, b2 and b3 in the part of the func-
tion that has been resolved from the empirical coefficients 
a1 and a2 of the base equation: 
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Genetic 
multiplier

Cate-
gory

Scots pine Norway spruce Silver birch
Estimate (SE) 2.5% CI 97.5% CI Estimate (SE) 2.5% CI 97.5% CI Estimate (SE) 2.5% CI 97.5% CI

g1 tested 1.011*** (0.014) 0.983 1.039 0.856*** (0.011) 0.835 0.878
qualified 0.964*** (0.006) 0.953 0.975 0.814*** (0.004) 0.806 0.821

g2 tested 0.860*** (0.059) 0.745 0.975 0.605*** (0.023) 0.560 0.650 0.275*** (0.009) 0.258 0.292
qualified 0.682*** (0.018) 0.647 0.717 0.595*** (0.008) 0.579 0.610 0.285*** (0.003) 0.278 0.291

g3 tested 0.870*** (0.058) 0.756 0.984 0.626*** (0.022) 0.582 0.669 0.282*** (0.009) 0.265 0.300
qualified 0.693*** (0.018) 0.659 0.728 0.616*** (0.008) 0.601 0.631 0.290*** (0.003) 0.283 0.297

Fit statistics
N 4308 19219 24535
AIC 14399.5 41754.3 78007.2
RMSE (m) 1.390 0.717 0.724
AMRES (m) 0.950 0.441 0.833
R2

adj 0.918 0.951 0.926
Prediction statistics

N 2435 11022 10535
RMSE (m) 1.351 0.738 1.100
AMRES (m) 0.977 0.445 0.846
R2

adj 0.908 0.943 0.922
Prediction statistics (unmodified model)

N 2435 11022 10535
RMSE (m) 1.467 0.920 2.222
AMRES (m) 1.095 0.510 1.935
R2

adj 0.891 0.912 0.683

Table 3. Estimated forest reproductive material category-specific (‘tested’ and ‘qualified’) genetic multipliers g1, g2 and g3 with stan-
dard errors (SE) and confidence intervals (CI) for the final best-fit models and their fit and prediction statistics

Note: N – number of observations, AIC – Akaike information criterion, RMSE – root mean square error; AMRES – absolute mean residual, 
R2

adj – adjusted coefficient of determination; * p < 0.05, ** p < 0.01, *** p < 0.001. 

 

Figure 2. Residuals of fitting and 
validation data against the final best-fit 
models with multipliers (first two columns) 
and the unmodified reference model (third 
column) for Scots pine (upper three panels), 
Norway spruce (middle three panels) and 
silver birch (lower three panels)
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and ‘qualified’, while the dynamic GADA form itself pro-
vided invariance of various environmental effects like site 
quality (Cieszewski and Bailey 2000). The GADA func-
tions with added the FRM category-specific multipliers 
predicted tree height growth with sufficient accuracy with-
out any distinct trends in the residuals for Scots pine and 
silver birch, yet with negligible overestimation for higher 
and underestimation for smaller trees for Norway spruce 
(Figure 2). However, fit and prediction statistics showed 
statistically significant and biologically reasonable im-
provements of model accuracy for all three species with in-
corporation of the multipliers (Table 3; Figure 3) compar-
ing to the unmodified functions with distinct residual bias 
(Table 3, Figure 2). Although the chosen reference models 
have shown sufficient precision when applied to NFI data 
consisting of measurements from mainly unimproved trees 
(Donis et al. 2018, Donis and Šņepsts 2019), the growth 
patterns of the improved FRM appeared to be different and 
were reflected in the modified growth equation curves to 
some extent (Figure 3). 

The height-age curves of the improved trees differed 
from the predicted growth trajectories of the unmodified 
function depending on the species studied and site index 
(SI) (Figure 3). Both categories – ‘qualified’ and ‘tested’ – 
had growth trajectories above the reference curve based 
solely on NFI data, hence reasonably indicating better 
growth of improved planting stock. The selection of 10% 
of the tallest families was reflected in the curve of cate-
gory ‘tested’, which was overall above the one for ‘qual-
ified’ material, hence indicating a certain persistence of 
estimated gains over time. However, the projected height 
growth for the improved FRM was slightly lower for high 
SIs (H100 ≥ 33 m) compared to the reference model. It could 
be explained by overestimations of the unmodified function 
for extremely fertile sites due to the lack of calibration data 
coverage from the NFI plots, while steep measured height 
trajectories from the progeny trials allowed for corrections 
with the incorporated multipliers. On the contrary, absence 
of progeny trial data from poor site conditions with poten-
tially masked genetic differences (Carson et al. 1999) might 
have caused overlapping of Norway spruce curves for cate-
gories ‘tested’ and ‘qualified’, the former of which in other 
cases showed expected better growth compared to the latter 
(Figure 3). Therefore, we emphasize that model limitations 
must be considered to avoid inaccurate projections and it 
should be used for estimations on rather fertile sites, typi-
cally chosen to genetically improved planting FRM (Kim-
berley et al. 2015). Moreover, previous modelling studies 
have indicated bias for long-term predictions based on cali-
bration data from short time – series (Sharma et al. 2017). In 
our study, the parametrisation of the genetic multipliers was 
based on data limited to rather young age – up to 42 years 
(Table 1), when the asymptote and, accordingly, the influ-
ence of genetics on it could not be determined (Sabatia and 
Burkhart 2013, Deng et al. 2020). However, the introduced 
genetic multipliers significantly improved the model accu-

 
Figure 3. The final best-fit models with the genetic multipliers 
(black solid and dashed lines for improved categories ‘tested’ 
and ‘qualified’, respectively) vs. the unmodified model (dark 
grey solid lines) for Scots pine (upper panel), Norway spruce 
(middle panel) and silver birch (lower panel). Light grey colour 
in the background denote observed height-age series 

Discussion 
Considering available datasets with short time-series 

(up to four measurements) from the progeny trials with a 
limited age range (Table 1), we followed relatively simple 
yet effective genetic multiplier approach (Joo et al. 2020) 
to quantify breeding effect on height growth of Scots pine, 
Norway spruce and silver birch by adjusting parameters 
within the growth model (Haapanen et al. 2016). The ap-
proach allowed to specify general differences in the growth 
curves for genetically improved FRM categories ‘tested’ 
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racy for the young stands (Table 3), which is important for 
more efficient planning of early and mid-rotation silvicul-
tural measures, such as first commercial thinning (Manso 
et al. 2022). Indeed, assuming that the first thinning should 
be done when the dominant height has reached ca. 15 m 
(Hynynen et al. 2010), timing of this measure might have 
been planned at least 5 years earlier for silver birch in fertile 
sites (for instance, when H100 = 33 m), which showed the 
largest differences among the studied species in growth rate 
at young age compared to the reference model (Figure 3). 
In contrast, the distinct underestimation of height observed 
during validation of the unmodified model for birch indi-
cates delayed timing of planned activities, if the reference 
model is used for improved trees. In addition, the approach 
with one function for the particular species, but the FRM 
category-specific set of parameters could be a user-friendly 
tool in practice for forest owners and managers, who usual-
ly have information about the origin of planting stock. In-
corporation of the modified functions into the forest growth 
simulators may result in advanced predictions, yet without 
added complexity to the end user. 

Along with more precise management planning, 
Gwaze et al. (2002) suggested model parameters to better 
indicate altered growth patterns due to genetic improve-
ments compared to separate measurements at specific age, 
hence serving as an exploratory tool in tree breeding prac-
tices. However, the determined differences in growth tra-
jectories for the improved FRM might not be related solely 
to genetic effects, which could have interacted with other 
factors, such as site quality, climatic conditions, manage-
ment activities etc. (Hamilton and Rehfeldt 1994, Costa e 
Silva et al. 2001, Kimberley et al. 2015, Egbäck 2016), 
resulting in enhanced growth rate and productivity (Deng 
et al. 2020). For instance, rapid early growth of improved 
silver birch could also be related to rather fertile former 
agricultural land, where the improved genotypes could bet-
ter manifest themselves (Kimberley et al. 2015), yet the 
overall management (including planting density, weeding, 
etc.) and site quality of the studied progeny trials reflected 
traditional practices used for the specific species in pro-
duction forestry. Furthermore, among other tree variables, 
we chose to model the height of improved planning stock 
due to its relative independence from such attributes of 
stands as density (Weiskittel et al. 2011) and serving as a 
sufficiently reliable proxy for areal production later in the 
rotation (Liziniewicz et al. 2018, Liziniewicz and Berlin 
2019). However, we aimed to improve the accuracy of the 
practically applicable model rather than distinguish a clear 
genetic effect on the improved FRM category  – specific 
model parameters, which have been reported to be vast-
ly conflicting in earlier studies with a still vague biologi-
cal basis (Deng et al. 2020). Still, we observed an altered 
growth rate and a potentially different upper asymptote 
for the best fitted models (Equation 4) with the category 
(‘qualified’ or ‘tested’) dependent genetic multipliers in 
front of coefficients b1, b2 and b3 (Figure 3). 

Conclusions 
In conclusion, the tested growth functions with the 

best fitted FRM category-specific multipliers more ac-
curately reflected the actual height growth of genetical-
ly improved Scots pine, Norway spruce and silver birch 
comparing to the unmodified reference function calibrated 
solely on data from the NFI. The modelling results indicate 
a faster growth rate of improved material at a younger age, 
especially for silver birch, suggesting a potentially altered 
management regime for young stands. A set of multipliers 
for each FRM category – ‘tested’ or ‘qualified’ – may be 
easy applicable in practice from the perspective of forest 
owners and managers, who usually have necessary infor-
mation about origin of planting material used in forest 
regeneration. The advanced models for improved trees 
indicate potential to schedule such management activities 
as thinning more promptly, without eventual delay due 
to underestimation of growth. However, such predictions 
are limited to the sites with medium and high site indices, 
where improved planting stock is typically used. 
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Supplementary 1. Tested King-Prodan dynamic GADA models with category (‘qualified’ or ‘tested’) dependent genetic multipliers 
g, g1, g2 and g3 in front of the coefficients b1, b2 and b3 in the part of the function that has been resolved from the empirical coefficients 
a1, a2 and a3 of base equation. The part of the function preceded by the category-specific multiplier is shown in red

Model I: all equation modified:
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Model I: all equation modified: 

 

𝐻𝐻� � 1.3 � 𝑔𝑔 𝑔 𝐴𝐴���

𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
�

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�1� 

 

 

Model II: modified theoretical (unobserved) variable X: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑏𝑏� � 100 𝑏𝑏� ∙ 𝑔𝑔 𝑔
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� 𝑔𝑔 𝑔

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�2� 

 

Model III: modified resolved a1: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���𝑔��

𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
�

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���𝑔��
�3� 

 

Model IV: modified resolved a2: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑔𝑔� 𝑔 �𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� �

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�4� 

 

Model V: modified b2 and b3 in resolved a2: 

 

	 (1)

Model II: modified theoretical (unobserved) variable X:
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Model I: all equation modified: 

 

𝐻𝐻� � 1.3 � 𝑔𝑔 𝑔 𝐴𝐴���

𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
�

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�1� 

 

 

Model II: modified theoretical (unobserved) variable X: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑏𝑏� � 100 𝑏𝑏� ∙ 𝑔𝑔 𝑔
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� 𝑔𝑔 𝑔

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�2� 

 

Model III: modified resolved a1: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���𝑔��

𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
�

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���𝑔��
�3� 

 

Model IV: modified resolved a2: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑔𝑔� 𝑔 �𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� �

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�4� 

 

Model V: modified b2 and b3 in resolved a2: 

 

	 (2)

Model III: modified resolved a1:
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𝐻𝐻� � 1.3 � 𝑔𝑔 𝑔 𝐴𝐴���
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𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
�

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�1� 

 

 

Model II: modified theoretical (unobserved) variable X: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑏𝑏� � 100 𝑏𝑏� ∙ 𝑔𝑔 𝑔
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� 𝑔𝑔 𝑔

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�2� 

 

Model III: modified resolved a1: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���𝑔��

𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
�

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���𝑔��
�3� 

 

Model IV: modified resolved a2: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑔𝑔� 𝑔 �𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� �

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�4� 

 

Model V: modified b2 and b3 in resolved a2: 

 

	 (3)

https://doi.org/10.1016/j.foreco.2018.12.044
https://doi.org/10.1016/j.foreco.2018.12.044
https://doi.org/10.1016/j.foreco.2018.01.015
https://doi.org/10.1016/j.foreco.2018.01.015
https://doi.org/10.1093/forestry/cpab049
https://stat.gov.lv/en/statistics-themes/business-sectors/forestry/tables/mep020-production-forest-reproductive-material
https://stat.gov.lv/en/statistics-themes/business-sectors/forestry/tables/mep020-production-forest-reproductive-material
https://stat.gov.lv/en/statistics-themes/business-sectors/forestry/tables/mep020-production-forest-reproductive-material
https://www.r-project.org
https://doi.org/10.1080/02827581.2014.926100
https://doi.org/10.1080/02827581.2014.926100
https://vtechworks.lib.vt.edu/bitstream/handle/10919/37627/Sabatia_CO_D_2011.pdf?sequence=1
https://vtechworks.lib.vt.edu/bitstream/handle/10919/37627/Sabatia_CO_D_2011.pdf?sequence=1
https://vtechworks.lib.vt.edu/bitstream/handle/10919/37627/Sabatia_CO_D_2011.pdf?sequence=1
https://doi.org/10.5849/forsci.11-093
https://doi.org/10.17221/135/2016-JFS
https://doi.org/10.1016/j.foreco.2008.09.057
https://doi.org/10.1016/j.foreco.2008.09.057
https://doi.org/10.1002/9781119998518
https://doi.org/10.3390/f9020052
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Model IV: modified resolved a2:

1 
 

Supplementary 1. Tested King-Prodan dynamic GADA models with category 
(‘qualified’ or ‘tested’) dependent genetic multipliers g, g1, g2 and g3 in front of the 
coefficients b1, b2 and b3 in the part of the function that has been resolved from the 
empirical coefficients a1, a2 and a3 of base equation. The part of the function 
preceded by the category-specific multiplier is shown in red. 
 

Model I: all equation modified: 

 

𝐻𝐻� � 1.3 � 𝑔𝑔 𝑔 𝐴𝐴���

𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
�

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�1� 

 

 

Model II: modified theoretical (unobserved) variable X: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑏𝑏� � 100 𝑏𝑏� ∙ 𝑔𝑔 𝑔
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� 𝑔𝑔 𝑔

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�2� 

 

Model III: modified resolved a1: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���𝑔��

𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
�

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���𝑔��
�3� 

 

Model IV: modified resolved a2: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑔𝑔� 𝑔 �𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� �

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�4� 

 

Model V: modified b2 and b3 in resolved a2: 

 

	 (4)

Model V: modified b2 and b3 in resolved a2:

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑔𝑔� ∙ 𝑏𝑏� � 100 ∙ 𝑔𝑔� ∙ 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
�

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�5� 

 

Model VI: modified resolved a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�6� 

 

Model VII: modified resolved a1 and a2: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���∙��

𝑔𝑔� ∙ �𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� �

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���∙��
�7� 

 

Model VIII: modified b1, b2, and b3 in resolved a1 and a2: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���∙��

𝑔𝑔� ∙ 𝑏𝑏� � 100 ∙ 𝑔𝑔� ∙ 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
�

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���∙��
�8� 

 

Model IX: modified resolved a1 and a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���∙��

𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���∙��
�9� 

 

Model X: modified resolved a2 and a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑔𝑔� ∙ �𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� � 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�10� 

	 (5)

Model VI: modified resolved a3:

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑔𝑔� ∙ 𝑏𝑏� � 100 ∙ 𝑔𝑔� ∙ 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
�

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�5� 

 

Model VI: modified resolved a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�6� 

 

Model VII: modified resolved a1 and a2: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���∙��

𝑔𝑔� ∙ �𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� �

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���∙��
�7� 

 

Model VIII: modified b1, b2, and b3 in resolved a1 and a2: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���∙��

𝑔𝑔� ∙ 𝑏𝑏� � 100 ∙ 𝑔𝑔� ∙ 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
�

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���∙��
�8� 

 

Model IX: modified resolved a1 and a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���∙��

𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���∙��
�9� 

 

Model X: modified resolved a2 and a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑔𝑔� ∙ �𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� � 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�10� 

	 (6)

Model VII: modified resolved a1 and a2:

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑔𝑔� ∙ 𝑏𝑏� � 100 ∙ 𝑔𝑔� ∙ 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
�

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�5� 

 

Model VI: modified resolved a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�6� 

 

Model VII: modified resolved a1 and a2: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���∙��

𝑔𝑔� ∙ �𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� �

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���∙��
�7� 

 

Model VIII: modified b1, b2, and b3 in resolved a1 and a2: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���∙��

𝑔𝑔� ∙ 𝑏𝑏� � 100 ∙ 𝑔𝑔� ∙ 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
�

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���∙��
�8� 

 

Model IX: modified resolved a1 and a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���∙��

𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���∙��
�9� 

 

Model X: modified resolved a2 and a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑔𝑔� ∙ �𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� � 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�10� 

	 (7)

Model VIII: modified b1, b2, and b3 in resolved a1 and a2:

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑔𝑔� ∙ 𝑏𝑏� � 100 ∙ 𝑔𝑔� ∙ 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
�

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�5� 

 

Model VI: modified resolved a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�6� 

 

Model VII: modified resolved a1 and a2: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���∙��

𝑔𝑔� ∙ �𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� �

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���∙��
�7� 

 

Model VIII: modified b1, b2, and b3 in resolved a1 and a2: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���∙��

𝑔𝑔� ∙ 𝑏𝑏� � 100 ∙ 𝑔𝑔� ∙ 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
�

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���∙��
�8� 

 

Model IX: modified resolved a1 and a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���∙��

𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���∙��
�9� 

 

Model X: modified resolved a2 and a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑔𝑔� ∙ �𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� � 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�10� 

	 (8)

Model IX: modified resolved a1 and a3:

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑔𝑔� ∙ 𝑏𝑏� � 100 ∙ 𝑔𝑔� ∙ 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
�

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�5� 

 

Model VI: modified resolved a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�6� 

 

Model VII: modified resolved a1 and a2: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���∙��

𝑔𝑔� ∙ �𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� �

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���∙��
�7� 

 

Model VIII: modified b1, b2, and b3 in resolved a1 and a2: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���∙��

𝑔𝑔� ∙ 𝑏𝑏� � 100 ∙ 𝑔𝑔� ∙ 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
�

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���∙��
�8� 

 

Model IX: modified resolved a1 and a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���∙��

𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���∙��
�9� 

 

Model X: modified resolved a2 and a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑔𝑔� ∙ �𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� � 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�10� 

	 (9)

Model X: modified resolved a2 and a3:

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑔𝑔� ∙ 𝑏𝑏� � 100 ∙ 𝑔𝑔� ∙ 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
�

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�5� 

 

Model VI: modified resolved a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�6� 

 

Model VII: modified resolved a1 and a2: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���∙��

𝑔𝑔� ∙ �𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� �

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���∙��
�7� 

 

Model VIII: modified b1, b2, and b3 in resolved a1 and a2: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���∙��

𝑔𝑔� ∙ 𝑏𝑏� � 100 ∙ 𝑔𝑔� ∙ 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
�

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���∙��
�8� 

 

Model IX: modified resolved a1 and a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���∙��

𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���∙��
�9� 

 

Model X: modified resolved a2 and a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑔𝑔� ∙ �𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� � 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�10� 

	 (10)

Model XI: modified b2 and b3 in resolved a2 and a3:

 

Model XI: modified b2 and b3 in resolved a2 and a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑔𝑔� ∙ 𝑏𝑏� � 100 ∙ 𝑔𝑔� ∙ 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�5� 

 

Model XII: modified resolved a1, a2 and a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���∙��

𝑔𝑔� ∙ �𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� � 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���∙��
�12� 

 

Model XIII: modified b1, b2, and b3 in resolved a1, a2, and a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���∙��

𝑔𝑔� ∙ 𝑏𝑏� � 100 ∙ 𝑔𝑔� ∙ 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���∙��
�13� 

 

	 (11)

Model XII: modified resolved a1, a2 and a3:

 

Model XI: modified b2 and b3 in resolved a2 and a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑔𝑔� ∙ 𝑏𝑏� � 100 ∙ 𝑔𝑔� ∙ 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�5� 

 

Model XII: modified resolved a1, a2 and a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���∙��

𝑔𝑔� ∙ �𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� � 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���∙��
�12� 

 

Model XIII: modified b1, b2, and b3 in resolved a1, a2, and a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���∙��

𝑔𝑔� ∙ 𝑏𝑏� � 100 ∙ 𝑔𝑔� ∙ 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���∙��
�13� 
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Model XIII: modified b1, b2, and b3 in resolved a1, a2, and a3:

 

Model XI: modified b2 and b3 in resolved a2 and a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���

𝑔𝑔� ∙ 𝑏𝑏� � 100 ∙ 𝑔𝑔� ∙ 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���
�5� 

 

Model XII: modified resolved a1, a2 and a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���∙��

𝑔𝑔� ∙ �𝑏𝑏� � 100 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� � 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���∙��
�12� 

 

Model XIII: modified b1, b2, and b3 in resolved a1, a2, and a3: 

 

𝐻𝐻� � 1.3 � 𝐴𝐴���∙��

𝑔𝑔� ∙ 𝑏𝑏� � 100 ∙ 𝑔𝑔� ∙ 𝑏𝑏�
𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�

100𝑏𝑏� � 𝐴𝐴���
� 𝑔𝑔� ∙

𝐴𝐴���𝐻𝐻� � 1.3 � 𝑏𝑏�
100𝑏𝑏� � 𝐴𝐴���

𝐴𝐴���∙��
�13� 
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Supplementary 2. Fit statistics for tested King-Prodan dynamic GADA models with category (‘qualified’ or ‘tested’) dependent 
genetic multipliers (standard errors in brackets) in front of the coefficients b1, b2 and b3 (model numbering as in Supplementary 1)

Genetic 
multiplier Category

Model
I II III IV V VI VII VIII IX X XI XII XIII

Scots pine
g tested 1.030 0.997

(0.004) (0.000)
qualified 1.029 0.997

(0.002) (0.000)
g1 tested 1.011 1.019 1.011 1.018 0.828 1.019 0.241

(0.001) (0.015) (0.014) (0.005) (0.029) (0.032) (0.126)
qualified 1.011 0.970 0.964 1.035 0.781 0.970 0.476

(0.001) (0.006) (0.006) (0.002) (0.012) (0.013) (0.041)
g2 tested 0.957 0.823 1.030 0.860 0.953 0.839 1.030 0.041

–0.005 (0.029) (0.058) (0.059) (0.014) (0.027) (0.099) (0.020)
qualified 0.959 0.786 0.855 0.682 0.907 0.792 0.855 0.104

–0.002 (0.012) (0.019) (0.018) (0.006) (0.011) (0.032) (0.016)
g3 tested 0.833 0.913 0.870 1.057 1.010 0.952 1.000 0.053

(0.027) (0.011) (0.058) (0.040) (0.032) (0.034) (0.068) (0.018)
qualified 0.799 0.923 0.693 1.211 1.132 1.070 1.000 0.116

(0.011) (0.005) (0.018) (0.017) (0.014) (0.015) (0.033) (0.017)
g4 tested –6.732

(5.315)
qualified –1.777

           (0.463)
N 4308 4308 4308 4308 4308 4308 4308 4308 4308 4308 4308 4308 4308
AIC 14716.1 14789.8 14695.7 14674.2 14437.8 14834.5 14649.3 14399.5 14560.6 14591.6 14417.7 14653.3 14751.4

Norway spruce
g tested 0.898 1.005

(0.003) (0.000)
qualified 0.916 1.005

(0.001) (0.000)
g1 tested 0.955 0.907 0.888 0.955 0.622 1.000 1.310

(0.001) (0.005) (0.004) (0.004) (0.019) (0.012) (0.020)
qualified 0.964 0.927 0.909 0.964 0.63 1.000 1.301

(0.001) (0.002) (0.002) (0.001) (0.007) (0.004) (0.007)
g2 tested 1.134 0.605 0.861 0.413 0.948 0.634 1.134 1.808

(0.004) (0.023) (0.012) (0.016) (0.006) (0.018) (0.0270 (0.124)
qualified 1.103 0.595 0.891 0.449 0.933 0.643 1.103 1.727

(0.002) (0.008) (0.005) (0.006) (0.002) (0.007) (0.010) (0.041)
g3 tested 0.625 1.544 0.429 1.000 1.687 1.687 1.000 1.803

(0.022) (0.013) (0.015) (0.040) (0.022) (0.020) (0.057) (0.122)
qualified 0.616 1.514 0.466 1.000 1.721 1.712 1.000 1.722

(0.008) (0.006) (0.006) (0.017) (0.010) (0.010) (0.022) (0.040)
g4 tested 2.644

(0.045)
qualified 2.787

(0.019)
N 19219 19219 19219 19219 19219 19219 19219 19219 19219 19219 19219 19219 19219
AIC 44285.8 44123.4 44287.1 45574.7 41754.3 40261.1 43758.9 41937.5 44291.1 39460 42984.3 45582.7 42473.1

Silver birch
g tested 1.094 0.996

(0.002) (0.000)
qualified 1.098 0.996

(0.001) (0.000)
g1 tested 1.045 1.032 0.856 1.045 0.462 1.000 1.438

(0.001) (0.011) (0.011) (0.003) (0.011) (0.028) (0.087)
qualified 1.045 1.032 0.814 1.045 0.565 1.000 1.150

(0.000) (0.004) (0.004) (0.001) (0.004) (0.009) (0.025)
g2 tested 0.840 0.380 0.946 0.275 0.840 0.469 0.837 2.335

(0.003) (0.009) (0.039) (0.009) (0.007) (0.010) (0.071) (0.743)
qualified 0.842 0.466 0.946 0.285 0.842 0.569 0.838 0.987

(0.001) (0.003) (0.014) (0.003) (0.002) (0.003) (0.024) (0.091)
g3 tested 0.396 0.842 0.282 1.000 1.000 1.250 1.000 2.331

(0.008) (0.005) (0.009) (0.014) (0.011) (0.020) (0.028) (0.735)
qualified 0.480 0.830 0.290 1.000 1.000 1.361 1.000 0.986

(0.003) (0.002) (0.003) (0.005) (0.004) (0.008) (0.010) (0.090)
g4 tested 1.685

(0.058)
qualified 1.557

(0.029)
N 24535 24535 24535 24535 24535 24535 24535 24535 24535 24535 24535 24535 24535
AIC 96556 98660.5 93642.9 91172.3 80446 103129.6 92890.8 78007.2 93646.9 91176.3 81938.3 91234.2 81882.9

Note: N – number of observations, AIC – Akaike information criterion.
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