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Abstract 
Canopy gaps play a crucial role in forest dynamic processes and help preserve biodiversity, influence nutrient cycles, and 

maintain the complex structure of the forests. This study aimed to quantify the gap dynamics, regeneration establishment, and 
gap closure in a natural old-growth Hyrcanian forest in the north of Iran. We used a repeated inventory of gap size-frequency 
and fraction in beech (Fagus orientalis) dominant forest over a 9-year interval (2010–2019). The total gap area documented in 
2010, 2016, and 2019 was 2,487, 6,890, and 8,864 m2, respectively. The gap area ranged from the smallest sizes of 139, 83, and 
153 m2 to the largest sizes 906, 1,668, and 871 m2 in 2010, 2016, and 2019, respectively. Gap fraction significantly increased 
from 0.52%, 1.93%, and 3.7% in 2010, 2016, and 2019, respectively. The size distribution of gaps was strongly skewed to the 
medium class (200–500 m2), with approximately 60% of the gaps. Results revealed that total regenerations are not in correlation 
with gap size. Small gaps were closed within a few years through rapid horizontal canopy expansion of neighboring beech 
trees. The gap closure rate decreased by increasing the gap size (70% in 71 m2 to 10% in 1,600 m2). The highest density and 
greatest regeneration growth occurred mostly along the eastern part of gaps. The spatial distributions of regeneration density 
demonstrated differences in different gap size classes, which probably resulted from heterogeneity in the microenvironment 
within the gap and the differences in the regeneration responses to these variations. This investigation provided useful data for 
managing natural regenerations based on forest sustainability. The changes in gap patterns observed between 2010 and 2019 
highlight the high value of repeated gap inventories for better comprehending the disturbance regeneration and dynamics of 
natural gaps.
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Introduction 
Due to the increased population and environmental 

pollution, protection of the environment and natural re-
sources is receiving increasing attention. In the meantime, 
the importance of forest ecosystems is very high. The for-
est ecosystem and its dynamics depend on numerous fac-
tors, including natural disturbances that affect gap in the 
forest structure and influence the dynamics of the plant 
population (Naaf and Wulf 2007). The term gap usually 
refers to some open space inside the forest canopy caused 
by the death or injury of trees (Zhu et al. 2014). Cano-
py gaps play key roles in forest ecosystem development 
and result from either natural processes or targeted forest 
management activities (Holik et al. 2018). Gap disturbanc-
es are one of the fundamental determinants of the forest 
structure, composition, and dynamics (Turner 2010, Yang 
et al. 2017), and their ecological effects vary with size and 

frequency (White and Jentsch 2001). Gap distribution is 
related to the geographical conditions of the region, as well 
as the climatic conditions and the management history of 
the forest. (Amiri et al. 2015). It is known that wind dis-
turbances selectively damage larger trees in each stand, 
and species with heartwood decay are generally vulnerable 
to wind damage (Peterson 2007). Earlier studies indicat-
ed that the functional properties of tree species might be 
as important as the wind in determining the characteris-
tics of gap formation (Arihafa and Mack 2013, Grainger 
and Aarde 2013). Gaps are mainly formed by the death of 
trees and other external destructive factors such as wind, 
snow, etc. Technically, they act as secondary factors in the 
weakening of weak trees and the spread of pre-formed gap 
(Bottero et al. 2011). Gaps from a fallen tree lead to regen-
eration growth in forests (Almquist et al. 2002). Increasing 
the sunlight, changing the soil moisture levels, and pro-
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Figure 1. The studied area of Haftkhaf forest (a part of 
Hyrcanian old-growth forests), northern Iran

viding available nutrients for regeneration lead to hetero-
geneity in the forest ecosystem (Hart and Grissino-Mayer 
2009) which plays a substantial role in species composi-
tion, growth rate, density, forest age, and gap dynamics 
(Weiskittel and Hix 2003, Woods 2004).

The spatial heterogeneity of the canopy structure means 
that there are different sizes and shapes of gap throughout 
the forest stand structure, and the creation of sequential 
mosaics in the forest ecosystem that begins with regenera-
tive cavities plays a significant role in the spatial structure 
of the stands. Surface soils have different effects on the es-
tablishment of regeneration and tree regeneration in man-
aged stands (Almuquist et al. 2002, Zolfaghari et al. 2007). 
Open forest areas as islands are regarded as having more 
biomass, more grass layers, and younger cover (Shabani 
et al. 2009) which increases the abundance, diversity, and 
composition of plants and the number of forest regener-
ations (Naaf and Wolf 2007, Dupuy and Chazdon 2008).

According to recent studies, in addition to gap, gap 
makers are also critical in the structure and dynamic pro-
cess of forest ecosystems and are even involved in the bio-
geochemical processes of forest ecosystems (Stella et al. 
2015). Forests contain large amounts of terrestrial biomass, 
so they are a pivotal part of the terrestrial carbon cycle as 
well (Grace et al. 2014). Gap makers are one of the main 
structural features of natural and untouched forests and 
have an important function in maintaining the production, 
environmental heterogeneity, and biodiversity assessment 
of forest ecosystems. Also, the diversity of the organisms is 
strongly influenced by forest gap makers in the forest. Gap 
makers form a stage of this cycle that is rich in nutrients 
such as nitrogen, calcium, phosphorus, magnesium, and 
potassium (Sefidi et al. 2007) and by retaining water and 
nutrients, they create a suitable microclimate under forest 
disturbances that help establish natural regeneration (Sefidi 
and Haghighi 2008).

The quantity of the gap pattern is important for un-
derstanding the dynamics of the stands, although the gap 
opening is a random and time-bound process (Nuske et al. 
2009). However, comparing the results of research on bright 
dynamics in different geographical locations will facilitate 
the prediction and understanding of the effects of different 
types of disturbances on various forest ecosystems. The 
basic characteristics of gap include size, age, shape, and 
rate, which affect forest components (Weiskittel and Hix 
2003). Numerous studies have attempted to determine the 
best statistical distribution of gap sizes (Sapkota and Oden 
2009, Yamamoto et al. 2011, Muscoclo et al. 2014, Zhu 
et al. 2014). The large gaps have a positive effect on tree 
regeneration (Cuevas 2003, Kathke and Bruelheide 2010), 
and the shape of gap affects microclimate and species com-
position (Dam 2001). Several studies have been conducted 
in old-growth forests to determine the gap characteristics, 
disturbance regimes, and its dynamics (Kucbel et al. 2010, 
Muscolo et al. 2014, Orman et al. 2018). Therefore, one 
should investigate the most important gap factors (struc-

ture and regenerations establishment). Understanding gap 
dynamics, regeneration establishment, and gap closure is 
of importance to sustainable forest management practices. 
Therefore, this study examined the gap creation, dynamics, 
and regeneration density in 9 years (2010–2019).

Materials and methods
Description of Hyrcanian forests
Hyrcanian forests form a unique forested massif that 

stretches 850 km along the southern coast of the Caspian 
Sea (across three provinces viz. Gilan, Mazandaran, and 
Golestan, Iran). The history of these broad-leaved forests 
dates to 25–50 million years, when they covered most of 
this Northern temperate region. These ancient forest areas 
retreated during the Quaternary glaciations and then ex-
panded again as the climate became milder. Their floris-
tic biodiversity is remarkable: 44% of the vascular plants 
known in Iran are found in the Hyrcanian region, which 
only covers 7% of the country. The forest is dominated 
by Oriental beech (Fagus orientalis Lipsky), Hornbeam 
(Carpinus betulus L.), Chestnut-leaved oak (Quercus cas-
taneifolia C. A. Mey), Caucasian alder (Alnus subcordata 
C. A. Mey.), and Persian maple (Acer velutinum Boiss).

Study site description
The study was conducted in a 50-ha area of Haftkhal 

series 1 and 4 (between 36°27′ and 36°32′ N and 53°42′ 
and 53°48′  E, DATUM WGS84) of the Hyrcanian old-
growth forest located in the Mazandaran Province with-
in the Alborz mountain region in the northern part of Iran 
(Figure 1). The series is located at an altitude of 1,100 
to 1,900 m a.s.l. The origin of the soil in the studied se-
ries consists of limestone, marl limestone, and dolomite 
limestone. The relative humidity fluctuates between 78% 
and 84%, with the highest in September and the lowest 
in March and April. There is rainfall in all months of the 
year, the amount of which varies in different months. The 
highest amount of rainfall in November is 64 mm and the 
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lowest in June is 38.2 mm. According to the embrothermic 
curve, the studied area is climatically temperate (Figure 2).

Field investigation
A complete gap field survey was conducted from June 

to September 2019 in a 50-ha forest stand. We found a total 
of 47 canopy gaps. We recorded physical site characteristics, 
including slope, aspect, elevation, geographical coordinates, 
and canopy height when gaps were not identified as closed.

Gap length was set as the longest distance from one 
gap edge to another gap edge, and the width was set as 
the longest perpendicular to length. In irregular-shaped 
gaps, we measured actual radii as in Lertzman and Krebs 
(1991). Gap areas were calculated by fitting width and 
length dimensions to the formula for an ellipse (Lima 
2005). Gap-makers were the fallen trees that created gaps, 
and one, two, or more of these fallen trees could form 
gaps. From the approximate centre of each expanded gap, 
we measured distance and direction to all regenerations to 
determine the detailed position of everyone. We also mea-
sured the ground diameter (GD) and height (H) regenera-
tions in the expanded gaps.

To better map the locations of regeneration, only 
those regeneration with a minimum height of 20 cm (Bar-
beito et al. 2008) were measured and mapped according 
to X/Y coordinates. This procedure was followed because 
the study was focused on established regeneration that had 
survived for at least one full year since germination. The 
age of regeneration was estimated by counting the branch 
whorls or scars on the stem (Wang and Zhang 2009, Dong 
et al. 2013).

Statistical analysis
We investigated the canopy gap creation and de-

velopment within the period 2010–2019. Gap formation 
and increases in gap area in 2010, 2016, and 2019 were 
investigated. The distribution of gap size and the cover 
percentages of canopy gap size classes were compared in 
2010–2019. We reported the relative rate of gap closure in 
relation to the gap size in 2019. The dominant process of 
gap closure (horizontal and vertical regeneration growth) 
was assessed in the field basis on measuring the percent 

area which filled by regenerations. All the statistical analy-
ses were performed with the SPSS software package, ver-
sion 19.0 (IBM SPSS Statistics 2010). Significant differ-
ences were detected at p < 0.05.

The spatial pattern of canopy gaps
The spatial distribution of canopy gaps varied in the 

different parts of the study area. The univariate Ripley’s 
L-function L(r):
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K(r) = (a / (n × (n – 1))) × sum[i, j]   I(d[i, j] ≤ r)e[i, j], where a is the area of the window, n is the 

number of data points, i and j are all ordered point pairs, d[i, j] is the distance between the two 

points i and j, I(d[i, j] ≤ r) is an indicator that equals 1 if the distance is less than or equal to r, and 

e[i, j] is the edge correction weight (Wang et al. 2017). L(r) has an expectation of 0 under the null 

hypothesis of CSR (complete spatial randomness) and becomes positive or negative when the 

pattern tends to aggregate or disperse. (Wang et al. 2017). 

Kernel density estimation for gap regeneration density 

Kernel density estimation (KDE) is a non-parametric statistical method (Parzen 1962) that 

is based on the quadratic kernel function and fits a smooth surface to each point to calculate a 

magnitude per unit area. KDE was calculated for regeneration density in the four gap size classes. 

The initial X/Y coordinates of the regeneration were converted into a new coordinate system with 

the centre of each gap as the origin. The gap points were grouped by gap size class (minor, small, 

medium, and large) and were aligned by the coordinates of each gap centre. Kernel density 

estimates were first run for each of the 47 gaps. Mean cell statistics were then calculated for all 

the kernel densities and heights within a particular gap size class, producing a final map of the 

mean KDE, the mean height, and their corresponding standard deviations. Similarly, the mean 

edge line of each gap section was plotted for each gap size class. The constant polygon shapefiles 

of sufficient size to encircle any gap were created to calculate the mean KDE and the mean height. 

To calculate and graphically display the mean KDE of the gaps and regenerations, QGIS 

application, v. 3.6.2 (QGIS 2019), was used. 

The Kernel density estimator is� �𝑥𝑥� �  �
��

^
� ∑ ������� ����� , where K(ꞏ) is a non-negative 

function that integrates to 1 and has a mean of 0, n is the number of data points (x), and h is the 

,

where 

6 

 

    r
π
rKrL   

          j,ierj,idIj,isum
nn
arK 



1

 

The spatial distribution of canopy gaps varied in the different parts of the study area. The 

univariate Ripley’s L-function L(r): L(r) = √(K(r) / π) – r, where 

K(r) = (a / (n × (n – 1))) × sum[i, j]   I(d[i, j] ≤ r)e[i, j], where a is the area of the window, n is the 

number of data points, i and j are all ordered point pairs, d[i, j] is the distance between the two 

points i and j, I(d[i, j] ≤ r) is an indicator that equals 1 if the distance is less than or equal to r, and 

e[i, j] is the edge correction weight (Wang et al. 2017). L(r) has an expectation of 0 under the null 

hypothesis of CSR (complete spatial randomness) and becomes positive or negative when the 

pattern tends to aggregate or disperse. (Wang et al. 2017). 

Kernel density estimation for gap regeneration density 

Kernel density estimation (KDE) is a non-parametric statistical method (Parzen 1962) that 

is based on the quadratic kernel function and fits a smooth surface to each point to calculate a 

magnitude per unit area. KDE was calculated for regeneration density in the four gap size classes. 

The initial X/Y coordinates of the regeneration were converted into a new coordinate system with 

the centre of each gap as the origin. The gap points were grouped by gap size class (minor, small, 

medium, and large) and were aligned by the coordinates of each gap centre. Kernel density 

estimates were first run for each of the 47 gaps. Mean cell statistics were then calculated for all 

the kernel densities and heights within a particular gap size class, producing a final map of the 

mean KDE, the mean height, and their corresponding standard deviations. Similarly, the mean 

edge line of each gap section was plotted for each gap size class. The constant polygon shapefiles 

of sufficient size to encircle any gap were created to calculate the mean KDE and the mean height. 

To calculate and graphically display the mean KDE of the gaps and regenerations, QGIS 

application, v. 3.6.2 (QGIS 2019), was used. 

The Kernel density estimator is� �𝑥𝑥� �  �
��

^
� ∑ ������� ����� , where K(ꞏ) is a non-negative 

function that integrates to 1 and has a mean of 0, n is the number of data points (x), and h is the 

,

where a is the area of the window, n is the number of data 
points, i and j are all ordered point pairs, d[i, j] is the dis-
tance between the two points i and j, I(d[i, j] ≤ r) is an indi-
cator that equals 1 if the distance is less than or equal to r, 
and e[i, j] is the edge correction weight (Wang et al. 2017). 
L(r) has an expectation of 0 under the null hypothesis of 
CSR (complete spatial randomness) and becomes positive 
or negative when the pattern tends to aggregate or disperse. 
(Wang et al. 2017).

Kernel density estimation for gap regeneration 
density

Kernel density estimation (KDE) is a non-parametric 
statistical method (Parzen 1962) that is based on the qua-
dratic kernel function and fits a smooth surface to each point 
to calculate a magnitude per unit area. KDE was calculated 
for regeneration density in the four gap size classes. The 
initial X/Y coordinates of the regeneration were converted 
into a new coordinate system with the centre of each gap as 
the origin. The gap points were grouped by gap size class 
(minor, small, medium, and large) and were aligned by the 
coordinates of each gap centre. Kernel density estimates 
were first run for each of the 47 gaps. Mean cell statistics 
were then calculated for all the kernel densities and heights 
within a particular gap size class, producing a final map of 
the mean KDE, the mean height, and their corresponding 
standard deviations. Similarly, the mean edge line of each 
gap section was plotted for each gap size class. The con-
stant polygon shapefiles of sufficient size to encircle any 
gap were created to calculate the mean KDE and the mean 
height. To calculate and graphically display the mean KDE 
of the gaps and regenerations, QGIS application, v. 3.6.2 
(QGIS 2019), was used.

The Kernel density estimator is, where K(∙) is a 
non-negative function that integrates to 1 and has a mean 
of 0, n is the number of data points (x), and h is the search 
radius. In this study, the default search radius was used for 
statistical analysis, calculated using the formula:
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where SD is the standard distance and Dm is the median distance (Wang et al. 2017). 

Results 

The total gap area documented in 2010, 2016, and 2019 was 2,487, 6,890, and 8,864 m2, 

respectively (Figure 3). The gap area in 2010 ranged from 139 to 906 m2, with an average of 

414 m2. In 2016, the gap area was ranged from 83 to 1,668 m2, with an average of 383 m2. Finally, 

in 2019, the gap area ranged from 153 to 871 m2, with an average of 385 m2. Fig. 4 depicts the 

coordinates of gaps by years 2010, 2016, and 2019, and Table 1 lists the gap geometry 

characteristics (gap area mean, gap perimeter, gap elongation, and gap-maker volume). 

Figure 3 here 

Figure4 here 

Forty-seven gaps were documented in the F. orientalis mixed stand (total area: 50.21 ha) in 

2010, 2016, and 2019 (3.7% of the total area of stands). The total area of gaps in 2010 was 0.26 ha 

(0.5% of the total area of stands). One gap was classified as small (< 200 m2), four as medium 

(200–500 m2), and one as large (< 1000 m2). From the 18 gaps (1.4% of the total area of stands) 

registered in 2016, six gaps were classified as small (< 200 m2), nine as medium (200–500 m2), 

two as large (< 1000 m2), and one as very large (> 1000 m2). Finally, in 2019, 23 new gaps were 

observed, accounting for 1.860% of the forest area. The gap share of 2019 was as follows: four 

gaps were classified as small (< 200 m2), 15 as medium (200–500 m2), and four as large 

(< 1,000 m2) (Figures 5 and 6). The size distribution of gaps was strongly skewed to the medium 

class (200–500 m2), with ~60% of the gaps. Six gaps were formed before 2010, and 41 gaps from 

2010 to 2019. We recorded 63 gap-makers as fallen trees (51%), uprooting (10%), broken trunks 

(21%), and standing dead tree (19%) in the 47 gaps. 

Eight species were registered as the regeneration composition in all the documented gaps 

(Table 1). Beech (F. orientalis) had the most frequency in the regeneration layer with 86.4%. Total 

regeneration in 2010, 2016, and 2019 was 39, 117, and 190, respectively. Mean regenerations’ 

cover in 2010, 2016, and 2019 was 10.8%, 11.4%, and 13.5%, respectively. 

  ,

where SD is the standard distance and Dm is the median 
distance (Wang et al. 2017).

Figure 2. Embrothermic curve of the study site
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Results
The total gap area documented in 2010, 2016, 

and 2019 was 2,487, 6,890, and 8,864 m2, respective-
ly (Figure 3). The gap area in 2010 ranged from 139 to 
906 m2, with an average of 414 m2. In 2016, the gap 
area was ranged from 83 to 1,668 m2, with an average of 
383 m2. Finally, in 2019, the gap area ranged from 153 
to 871 m2, with an average of 385 m2. Fig. 4 depicts the 
coordinates of gaps by years 2010, 2016, and 2019, and 
Table 1 lists the gap geometry characteristics (gap area 
mean, gap perimeter, gap elongation, and gap-maker  
volume).

Forty-seven gaps were documented in the F. orienta-
lis mixed stand (total area: 50.21 ha) in 2010, 2016, and 
2019 (3.7% of the total area of stands). The total area of 
gaps in 2010 was 0.26 ha (0.5% of the total area of stands). 
One gap was classified as small (< 200 m2), four as me-
dium (200–500 m2), and one as large (< 1000 m2). From 
the 18 gaps (1.4% of the total area of stands) registered in 
2016, six gaps were classified as small (< 200 m2), nine as 
medium (200–500 m2), two as large (< 1000 m2), and one 
as very large (> 1000 m2). Finally, in 2019, 23 new gaps 
were observed, accounting for 1.860% of the forest area. 
The gap share of 2019 was as follows: four gaps were clas-
sified as small (< 200 m2), 15 as medium (200–500 m2), 
and four as large (< 1,000 m2) (Figures 5 and 6). The size 
distribution of gaps was strongly skewed to the medium 
class (200–500 m2), with ~60% of the gaps. Six gaps were 
formed before 2010, and 41 gaps from 2010 to 2019. We 
recorded 63 gap-makers as fallen trees (51%), uprooting 
(10%), broken trunks (21%), and standing dead tree (19%) 
in the 47 gaps.

Figure 3. Gap area increase in different years
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Eight species were registered as the regeneration 
composition in all the documented gaps (Table 1). Beech 
(F. orientalis) had the most frequency in the regeneration 
layer with 86.4%. Total regeneration in 2010, 2016, and 
2019 was 39, 117, and 190, respectively. Mean regenera-
tions’ cover in 2010, 2016, and 2019 was 10.8%, 11.4%, 
and 13.5%, respectively.

 

 

 

 

 

 

 

 

 

Figure 4. Gap evolution in different years
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The spatial distribution of canopy gaps changes by 
increasing the distance. Univariate Ripley’s L-function 
showed random distribution in the range of 0 to 70 m (Fig-
ure 7). The aggregated spatial pattern started at 70 m and 
continued to 380 m. The spatial pattern of the gaps was 
random for distances > 380 m. Mean KDE for gap dis-
tribution indicated that it is denser (three gaps per ha) in 
the southern part of the studied area than in the other parts 
(Figure 8).

The cover of the regeneration layer was investigated 
horizontally and vertically in 47 gaps (Figure 9). The most 
successful regeneration of species from small to tall seed-
lings was beech, which comprised an 80% share of the tall 
seedlings and an increasing density over the 9 years. The 
small class of gap area (< 200 m2) has a larger closure rate 
(~70%). Gaps > 500 m2 had a 20% gap closure rate with 
>90% probability. Finally, as Fig. 9 shows, the gap closure 
rate decreased by increasing the gap size (70% in 71 m2 to 
10% in 1,600 m2).

The distance from the gap centre was used to bet-
ter exhibit the spatial distribution of regeneration den-
sity and growth within a gap. The highest regeneration 

Year
2010 2016 2019 Total

Number of gaps 6 18 23 47
Gap area mean (m2) 414.5 (261.96) 382.8 (379.78) 385.4 (193.42) 388.1 (280.64)
Gap perimeter (m) 82.8 (22.05) 77.8 (42.68) 81.9 (20.77) 80.5 (30.61)
Gap elongation (m) 21.5 (6.02) 18.2 (7.22) 20.1 (8.18) 19.6 (7.52)
Dead tree volume (m3) 10.4 (4.53) 13.5 (7.82) 12.1 (8.07) 12.4 (7.55)
Regeneration ground diameter (cm) 9.1 (4.50) 6.2 (2.10) 5.5 (2.06) 6.2 (2.69)
Regeneration ground height (m) 10.5 (4.96) 6.4 (2.39) 5.4 (1.99) 6.4 (3.06)
Regeneration composition
Fagus orientalis 33 93 173 299
Acer pseudoplatanus 2 7 9 18
Acer cappadocicum - 6 2 8
Tilia begonifolialinden 1 2 5 8
Ulmus glabra 2 5 - 7
Diospyros lotus 1 1 1 3
Alder buckthorn - 2 - 2
Parrotia persica - 1 - 1

Table 1. Gap geometry charac-
teristics (Mean ± Standard devi-
ation) and regeneration species 
composition divided by years of 
2010, 2016 and 2019

Figure 7. Univariate spatial analyses of gaps in 2019; the 
modified Ripley’s K-function L(r) for the univariate analyses
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density occurred in the centre of all gaps but, in small 
and medium gaps, regeneration density was skewed 
mostly in the eastern part (Figure 10). The different 
pattern observed for all the regenerations was proba-
bly because this species (especially beech as the dom-
inant species) is shade-tolerant only in the first stages  
of its life.

Discussion
Forest gaps are essential for the maintenance of diver-

sity in old-growth forests, and healthy forest gap dynam-
ics are likewise necessary for guaranteeing their long-term 
functioning and ecosystem services (Williams et al. 2019). 
Like the gap formation rate (3.7% points of the stand area 
in 9 years), the total gap area increased from 2010 to 2019. 
The frequency of gap creation has important outcomes for 
the species composition and forest structure. The rate of 
gap openings in natural mature temperate forests ranges 
from 0.5 to 2.0% per year (Runkle 1985). In 2019, 85% 
of the total gap area recorded in 2010 was still present, 
and gaps older than 9 years still had a share of ~13% in 
number and 17% in the total area of gaps mapped in 2013. 
This result is consistent with the findings of a study in a 
Fagus sylvatica virgin forest by Feldmann et al. (2018) 
who found a significant decrease in average gap fraction 
within only 10 years. The constant trend was described by 
Splechtna and Gratzer (2005) for a spruce-fir-beech virgin 
forest in Austria, where the gap fraction increased from 
3.3 to 13.8% within 34  years (1962–1996). Kenderes et 
al. (2009) found gap fraction (9–11%) and gap frequency 
distribution to be very stable over 33 years (1971–2004) in 
a mixed beech virgin forest reserve in the Czech Repub-
lic. Bottero et al. (2011) reported the highest gap fraction 
observed so far (19%) for beech-dominated forests from 
a mixed beech-spruce-fir forest. However, in this forest, 
only a small proportion of large gaps existed (~10%). 
These different findings suggest that regional climate and 
disturbance regimes, as well as topography and physiog-

raphy, exert a large influence on the temporal dynamics of 
gap formation. Gaps are often irregularly spaced in rela-
tion to stand age, structure, and dynamics (Muscolo et al. 
2014). Marthews et al. (2008) showed that spatial gap dis-
tributions determine direct light regimes in time and space, 
increasing germination and the emergence of seedlings. 
Sharma et al. (2019) focused on the disturbances of dif-
ferent gap sizes and investigated gap spatial distribution, 
advanced regeneration, and stand structure of five Shorea 
robusta-dominated forests. Gap size is the most important 
characteristic of the gap, and the microclimatic environ-
ment of gap and humidity differs with gap size (Zhang et 
al. 2019). Gap size differs concerning tree size and crown 
dimensions, and the differences depend also on single or 
multiple-tree falls, as well as gap age. Gap size is often 
used as an indicator of environmental heterogeneity and 
resource sequestration in gaps. Gélhidy et al. (2006) in-
dicated that gap size had a profound effect on the envi-
ronmental variables measured, while relative light inten-
sity values in small gaps did not reach those in large gaps. 
Gap size reflects the magnitude of the disturbance, i.e., the 
type, number, and size of falls (Lima et al. 2008), which 
has a direct influence on gap microclimate and understo-
ry damage levels (Zhu et al. 2007). The size of a gap can 
strongly influence vegetation growth and nutrient cycling 
(Gray et al. 2002) and can have a considerable effect on 
several biological processes. Çoban et al. (2018) reported 
that soil moisture levels reached similar maximum values 
in gap centres regardless of gap size. Gaps create a range of 
light conditions within and around the gap opening which 
depend on sun angle (aspect and topography), tree height, 
and sky condition. The results of the present study showed 
that most of the gaps were of medium size (200–500 m2, 
~60%), which can provide a suitable condition of rela-
tive light intensity for better regeneration. Gap shape is 
another important descriptor with a substantial influence 
on gap microclimate (Salvador-Van Eysenrode et al. 1998) 
and site resource availability (Lertzman and Krebs 1991). 
Numerous gap shapes have been recognized, including 
chablis, ellipse, and triangle (Muscolo et al. 2014). Gag-
non et al. (2004) reported that gaps are often irregularly 
shaped. In general, irregular narrow gaps will receive far 
less PAR (Photosynthetically Active Radiation) at ground 
level than circular gaps of the same size and have increased 
competition for light, water, and nutrients (Gagnon et al.  
2004).

Gaps of different sizes are among the most important 
mechanisms for the maintenance of tree species diversity 
in forests (Zhang et al. 2019), although our findings indi-
cated that regeneration density decreases by increasing the 
gap size. However, our results are not in line with the con-
clusions of Kucbel et al. (2010) suggesting that regenera-
tion development increases with gap size. Garbarino et al. 
(2012) reported that early successional and shade-intoler-
ant species such as Acer pseudoplatanus and Sorbus aucu-
paria were present only in larger gaps in a Bosnian old-

Figure 10. Mean kernel density (n/m2) estimates for regeneration 
dispersion in gaps of the three size classes
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growth forest. Zhu et al. (2014) and Mallik et al. (2014) 
report that all groups of plants, including shade-tolerant 
ones, have significantly higher densities of seedlings and 
saplings in gaps compared to under canopy. Environmental 
heterogeneity, as well as light availability, is higher in the 
gaps in comparison with under canopy, and one expects 
to observe higher regeneration success (germination and 
growth) of tree species in gaps (Ruger et al. 2009, Deva-
giri et al. 2016). A small gap probably provides the ideal 
light environment for these shade-tolerant immatures to 
regenerate and grow (Swaine and Whitmore 1988). Yu et 
al. (2014) found that the diameter of medium gap regen-
erations was higher than that of large gaps. They suggest-
ed that the middle gap would promote regeneration and 
high-quality timber cultivation. The F. orientalis dominant 
species regeneration can alter its crown architecture to pla-
giotropic growth forms, but as an individual it grows and 
reaches a better light position in the stand, its crown archi-
tecture improves, and the number of plagiotropic, forked, 
and broom-shaped individuals is noticeably decreased 
(Rozenbergar and Diaci 2014, Orman et al. 2018). Beech 
is known for its capacity to rapidly expand its crown when 
light is available (Roloff 1986, Peters 1997). The results 
provide strong evidence that regenerations established in 
the forest gap since formation play a major role in the gap 
closure and canopy rebuilding process in the Hyrcanian 
forest. We discovered that regenerations are mostly present 
in the centre to the east part of gaps, which is in line with 
the findings of Wagner et al. (2010) and Cater and Diaci 
(2017) who suggested that gap centres are not optimal for 
the regeneration of this species. Vilhar et al. (2015) state 
that they expect gap centres to be the most favourable part 
for the regeneration of tolerant tree species with consider-
ing different factors such as high irradiance, increased soil 
depth, the highest topsoil water content, higher anticipat-
ed N availability, and reduced nutrient uptake by the tree 
roots. Also, Garbarino et al. (2012) confirmed that gap ge-
ometry was related to regeneration composition, showing 
that early successional and shade-intolerant species, such 
as sycamore maple and rowan, were positively associated 
with large and elongated gaps. In temperate forests, gap 
opening is the major process determining regeneration de-
velopment (Sapkota et al. 2009) and a vast body of litera-
ture exists on the effects of canopy gaps on tree recruitment 
patterns (Yamamoto 2000, Harcombe et al. 2002, Bottero 
et al. 2011).

Considering the KDE maps, the highest densities of 
regeneration occurred in small gaps (< 200 m2) along the 
eastern part of gaps with a maximum of 3.0–3.4 n/m2 re-
generations. F. orientalis was the dominant regeneration of 
species (86.4%). Therefore, we speculate that the optimal 
micro-environment for the two age classes of regenera-
tion in the present study might have occurred at different 
positions within gaps. Regardless of species shade toler-
ance, results showed that regeneration density was skewed 
mostly in the eastern part (small and medium gap size) and 

centre part (large and very large gap size), probably be-
cause of the sun angle. In this vein, Coates (2002) demon-
strated that regeneration success depends on mature tree 
canopy cover, gap size, and position in a gap. This result is 
consistent with that of Vilhar et al. (2015) who conducted 
that regenerations increase by increasing the gap size. A 
similar study of regeneration in gaps in a Hyrcanian for-
est revealed that total regeneration has no significant cor-
relation with gap size (Mohammadi et al. 2019). However, 
Cui et al. (2015) found that the regeneration was the most 
and least distributed in the eastern and northern edge of 
the gap, respectively. Furthermore, Wang et al. (2017) in-
dicated that no significant difference in regeneration den-
sity was observed among different gap sections. Raymond 
et al. (2006) studied spatial patterns of soil microclimate, 
light, regeneration, and growth within silvicultural gaps 
of mixed tolerant hardwood-white pine (Pinus strobus L.) 
stands. They found that their spatial patterns might change 
and diverge from each other in the future due to differential 
survival of different species. In this research, the reasons 
for the regeneration of F. orientalis distribution remain un-
clear, necessitating a study that focuses on the relationships 
between regeneration and important environmental factors 
(i.e. light distribution within gaps, soil moisture, tempera-
ture, and microclimate), microsite characteristics, and seed 
dispersal factors (i.e. seed size, seed predation, and the di-
rection of prevailing winds).

The rate of gap closure is partly a consequence of the 
rapid growth of gap regenerations, which can fill a gap 
within a few years. Indeed, we found a maximum gap clo-
sure rate in small and medium gaps (70%), whereas the 
large and very large gaps had a minimum gap closure rate 
(~10%). In temperate forests, a negative relationship is 
found between seedling height and gap size (Muscolo et 
al. 2014). Nevertheless, Bullock (2000) reported that larger 
gaps will be filled in less time due to reduced seedling com-
petition for light, nutrients, and water compared to small 
gaps. Diaci et al. (2012) found that small gaps will fill in 
5–40 years, while medium-size gaps require ~30– 60 years 
for closure. How rapid F. silvatica can close the gaps is 
demonstrated by the observations of Madsen and Hahn 
(2008) who found medium-sized gaps (180–470 m2) cut 
into a 110-year old beech stand to be nearly closed after 3 
to 4 years. We found a strong decrease in gap closure by in-
creasing the gap size. In contrast with our result, Whitmore 
(1982) represented 1,000 m2 as the minimum gap size 
needed for the successful regeneration of shade-intolerant 
species. Zhu et al. (2014) showed that regeneration density 
exhibited a significantly positive correlation with gap size, 
providing quantitative evidence for the large effect of gaps 
on increasing regeneration by woody species. According to 
Obiri and Lawes (2004) and Nagel et al. (2010), shade-in-
tolerant species or early-successional species are often re-
cruited only in the larger gaps and are usually established 
after gap formation, or in young gaps, where more light 
is available. Finally, Fox et al. (2000) and Herwitz et al. 
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(2000) demonstrated changes in gap dynamics over time, 
concluding that the total gap area had a clear decreasing 
trend: Smaller gaps vanished in the course of time, and 
larger ones tended to shrink.

Conclusion
The results of this study can support the point of view 

that the gap dynamics and regeneration patterns of the un-
even-aged stands are the most important rules of forest 
dynamic. The changes in gap patterns observed between 
2010 and 2019 highlights the high value of repeated gap 
inventories for better comprehending the disturbance re-
generation and dynamics of natural gaps. Although many 
studies have been conducted on the gap dynamics of nat-
ural forests, few of them have focused on the dynamics 
of gap closure. However, many studies indicate that ac-
cumulated knowledge of gap dynamics and regeneration 
patterns is useful for sustainable forest ecosystem manage-
ment. Our results showed a different regeneration pattern 
in gap size classes from 2010 to 2019. Due to rare gap clo-
sure, a high probability of gap recovery will be expected. 
Finally, our results took a major step towards a general un-
derstanding of gap dynamics and regeneration disturbance 
in Hyrcanian old-growth forests with the dominant species 
of F. orientalis. A longer period of gap data and regenera-
tion information collection is required for characterizing 
the disturbance gap regime and dynamics in the Hyrcanian 
forest. More research on other virgin forests would help 
assess regional and site-specific differences in forest gap  
dynamics.
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