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Abstract

When measuring in a forest inventory, height and diameter at breast height are basic variables. Generalised models do
not require measuring tree heights, and the number of measurements is minimal. However, the opinions of researchers differ in
both the number of variables included in the model and in the number of parameters. The purpose of this study was to obtain
24 new generalised height-diameter models based on simple ones, compare them with 9 generalised models selected from
other studies, and develop an appropriate height-diameter model for birch in the European part of Russia. The article shows
that even in simple cases, there is a wide variety of options for generalised models. Moreover, models with three independent
variables may be necessary and sufficient. These are the diameter at breast height, quadratic diameter at breast height, and
the mean height. The performance statistics showed that modified power function is the most suitable and, therefore, it is
recommended for predicting the height-diameter relationships for birch trees in this study area. The predicting variables for
applying developed generalised models to estimate total tree height require less sampling effort. They derive from conventional

forest inventory data which cuts costs and saves time during fieldwork.
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Introduction

Height and diameter at breast height are rudimentary/
primary measurement variables that are measured in a for-
est inventory. For example, they are used to estimation the
volume and biomass of trunks and estimating tree growth
(Adame et al. 2008, Picard et al. 2012, Gomez-Garcia et
al. 2014, Goussanou et al. 2016). Measuring the diameter
at breast height of a tree is accurate and straightforward
(Ferraz-Filho ae al. 2018) whereas measuring the height
of a tree is an expensive and time-consuming process (Ad-
ame et al. 2008, Mehtétalo et al. 2015). Consequently, only
heights of subsamples of trees are measured. Height-diam-
eter models are often used to estimate heights of trees with
diameters measured (Sanchez-Gonzalez et al. 2007, Lei at
al. 2009, Ogana et al. 2020).

The relationship between height and diameter is com-
plex nonlinear one. Therefore, so it is challenging to de-
scribe it with linear models (Adamec and Drapela 2015,
Chai et al. 2018). Many models have been developed (Lei
et al. 2009, Ahmadi and Alavi 2016, Liu et al. 2017). Sim-
ple models describe the relationship between height and
diameter at the local level. Usually, two-parameter and

three-parameter models stand out amongst the simplest
models (Mehtétalo et al. 2015, Sharma et al. 2016, Leb-
edev and Kuzmichev 2020). The two-parameter models
are referable (Mehtétalo et al. 2015, Sharma et al. 2016).
However, from a biological viewpoint, three-parameter
S-shaped curves are superior because they can convey
more accurately the relationship between height and diam-
eter for fine trees (Yuancai and Parresol 2001).

In practice, the generalised models are an alternative
to the simple models (Adamec 2015). They do not require
measuring tree heights, and they require minimal meas-
urements. Additionally, to the diameter at breast height,
generalised models may include quadratic mean diameter,
dominant diameter, average height, dominant height, stand
basal area, tree number and age (Sonmez 2009, Haruni et
al. 2010, Ahmadi and Alavi 2016, Santiago-Garcia et al.
2020). Many generalised models include the dominant
diameter and dominant height as predictors. These indi-
cators are not common in forest inventory in Russia and
the newly independent countries of the fSU. Despite the
importance of height-diameter models in forest growth
and yield prediction systems and the long time over which
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these models have existed for different regions Europe, rel-
atively not that many works on height-diameter models for
birch stands in Russian regions has been published. There-
fore, the development of generalised models including the
quadratic mean diameter and the average height is relevant
here. The purpose of this study was to obtain 24 new gen-
eralised height-diameter models based on simple models,
compare them with 9 generalised models selected from
other studies, and develop an appropriate height-diameter
model for birch stands in European Russia.

Materials and methods

Data used in this study were collected from 23 sample
plots (from 0.2 to 0.5 ha in area) established in the Forest
Experimental District, Russian State Agrarian Universi-
ty — Moscow Timiryazev Agricultural Academy. The age
of the stands, in which the model trees were measured, was
from 10 to 85 years. The average diameter was from 3 to
30 cm, and the average height was from 6 to 27 m. In the
experimental plots, 35 to 153 trees were measured. The
study area mainly consists of mixed and even-aged for-
ests dominated by pine, larch, birch, oak and linden. The
climate is moderately continental. The predominant soils
are sod-podzolic (Dubenok et al. 2020). In the herbaceous
layer Galeobdolon luteum Huds., Aegopodium podagraria
L., Geum urbanum L., Stellaria media (L.) Vill., S. holos-
tea L., Luzula pilosa (L.) Willd., Dryopteris carthusiana
(Vill.) H.P. Fuchs, Calamagrostis arundinacea (L.) Roth,
Lamium album L., Milium effusum L. and others prevail.

For each sample plot diameters and heights of all trees
were measured. A total of 2,201 individual tree height-di-
ameter measurements were available for this study. For
analysis, the data was divided into fitting and validation
samples in a 7:3 ratio. Table 1 shows the mean, minimum
and maximum values, and standard deviations of the stand
variables. The fitting data was obtained from 1540 individ-
ual trees and covers a wide range of tree sizes with diame-
ters ranging from 0.5 to 42.8 cm and tree heights from 2.0
to 28.7 m. The validation data was obtained from 661 in-
dividual trees with diameters ranging from 0.7 to 42.1 cm

Table 1. Descriptive statistics for 2201 sample trees

Variable Mean Min Max SD

Fitting data (No. of trees = 1,540)

DBH (cm) 12.2 0.5 42.8 6.6

h (m) 14.2 2.0 28.7 4.9

Dq (cm) 12.4 2.9 29.3 5.2

H (m) 14.2 5.2 26.1 4.2
Validation data (No. of trees = 661)

DBH (cm) 12.3 0.7 421 6.7

h (m) 14.3 25 28.4 438

Dq (cm) 12.4 29 29.3 5.2

H (m) 14.2 5.2 26.1 4.2

* Note: DBH is the diameter at breast height, h is the tree height, Dy is
the quadratic diameter at breast height in each plot, and H is the mean
height in each plot
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Figure 1. Scatter plots of tree height against diameter at breast
height (DBH) of trees for the fitting and the validation data sets

and tree heights from 2.5 to 28.4 m. Scatter plots of tree
diameter and height data for the datasets are also illustrated
(Figure 1).

In developing the generalised height-diameter mod-
els, the simple models were selected from other studies
(El1 Mamoun et al. 2013, Mehtdtalo et al. 2015, Hassan-
zad Navroodi et al. 2016, Liu et al. 2017, Lebedev and
Kuzmichev 2020, Ogana et al. 2020). For this study,
12 two-parameter models and 12 three-parameter models
were chosen. Four-parameter models were not included in
this study since they are more likely to be over-parameter-
ised thereby resulting in instability of the estimates (Fang
and Bailey 1998).

When developing generalised models based on sim-
ple models, the predictors were diameter at breast height,
quadratic diameter at breast height and average height. A
generalised model for diameter at breast height equal to a
quadratic diameter at breast height should return a height
value equal to the average height. As a result, 24 general-
ised models (M1-M24) which satisfy this condition were
obtained. New generalised models contain either 2 or 4 pa-
rameters. Simple models and generalised ones are given in
Table 2.

Generalised models with predictors of diameter at
breast height, quadratic diameter at breast height and mean
height were selected from other studies (Table 3) to com-
pare with 24 new models. Selected models (L1-L9) contain
from 2 to 10 parameters. Models L5 and L6 are linear and
they were designed for young black spruce (Picea mariana
(Mill.) Britt., E.E. Sterns et Poggenb.) and jack pine (Pinus
banksiana Lamb.) plantations. The other models are suita-
ble for stands of different ages.

The nonlinear least-squares method was used to fit
functions. The trust region reflective algorithm and the
dogleg algorithm with rectangular trust regions were used
to optimize the objective function. To select models that
better describe the relationship between heights and diam-
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Table 2. Simple and gen-
eralised height-diameter
models

* Note: DBH is the diameter
at breast height, h is the tree
height, D, is the quadratic
diameter at breast height
in each plot, H is the mean
height in each plot, @ and b
are model parameters
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eters of the trees, six metrics were used: root mean square
error (RMSE), mean absolute percentage error (MAPE),
coefficient of determination (R?), adjusted coefficient of
determination (R?-adj.), Akaike information criterion
(AIC) and Bayesian information criterion (BIC). Table 4
summarise the equations of these metrics. Models with the
lowest averages of RMSE, MAPE, AIC and BIC and with
the highest averages of R? and R*-adj. are recognized as the
best (Aertsen et al. 2010, Ahmadi et al. 2013, Chai et al.
2018). All analyses of data were performed using Python
programming language, version 3.5, as well as Pandas,
NumPy, SciPy, and scikit-learn software packages (Python
2020, Pandas Development Team 2020, NumPy 2020,
SciPy 2020, Pedregosa et al. 2011).

Results

Results of fitting 24 new generalised models and
9 generalised models from other studies are presented in
Table 5. Comparison of performance criteria for fitting
data and validation data indicates the absence of overfit-
ting for all models. All new generalised models except
M12 were well suited to the dataset and accounted for
more than 90% of the observed variability (R*-adj.), with
MAPE values below 8.8%, RMSE values less than 1.4 m,
and low AIC and BIC values. Models M9, M14, M20 and
M22 do not satisfy the requirement that the height-di-
ameter relationship is given by an increasing function
with an upper asymptote. Model M3 has the best quality
among generalised models based on two-parameter mod-
els (for validation data RMSE =1.145, MAPE = 6.613,

R*=0.945, R*-adj.=0.945, AIC=183.4, BIC=192.4).
The generalised model M2 based on the Naslund equation
showed good quality (for validation data RMSE = 1.146,
MAPE = 6.616, R*=0.944, R*-adj. =0.944, AIC = 183.6,
BIC =192.6). Model M24 has the best quality among
generalised models based on three-parameter models (for
validation data RMSE = 1.136, MAPE = 6.591, R*> = 0.944,
R*-adj. =0.944, AIC=176.1, BIC=194.1). In gener-
al, differences between performance criteria for different
models are often minor.

Among the models L1-L9, only L1 and L7 give the
equality of average height and height calculated for a di-
ameter at breast height equal to the quadratic diameter at
breast height. L7 model (for validation data RMSE = 1.152,
MAPE = 6.750, R?=0.943, R*-adj. =0.943, AIC=1914,
BIC=200.3) gives slightly better performance crite-
ria than L1 model (for validation data RMSE =1.164,
MAPE = 6.860, R*>=0.942, R*-adj. = 0.942, AIC = 206.5,
BIC=220.0). Compared to L7 model, M3 and M24
models achieve the best quality. According to the val-
ues of performance criteria, the best of all generalised
models is L8 model (for validation data RMSE = 0.970,
MAPE =5.689, R*=0.960, R*adj.=0.959, AIC =-20.3,
BIC =24.6).

The shape of the curves of the heights and diameters
depends on the model (Figure 2). The use of three-param-
eter base models in the generalized one provides more
flexibility for height-diameter curves. All the curves of
the dependence of relative height on relative diameter are
ordered with one intersection point. With an increase in


https://en.wikipedia.org/wiki/General-purpose_programming_language

DBH / Dq

DBH / Dg

—e—Dg=4cm --s--Dg=12cm —e—Dg=4cm --8--Dg=12cm

Dg=20cm--s--Dq =28 cm Dg=20cm --w--Dqg =28 cm

—e—Dq=36cm —e—Dqg =36 cm

Figure 2. M3 and M24 model prediction relationship of relative
heights to relative diameters for quadratic diameter at DBH from
4to36 cm

BALTIC FORESTRY 26(2) NEW GENERALISED HEIGHT-DIAMETER MODELS FOR THE BIRCH /.../ LEBEDEV, A.V.
Table 5. Performance criteria for generalised height-diameter models for the fitting and validation data
D Fitting Validation
RMSE MAPE R? R2-adj. AlC BIC RMSE MAPE R? Rz2-adj. AlC BIC
M1 1.177 7.066 0.941 0.941 505.0 515.6 1.199 7.089 0.939 0.938 2443 253.3
M2 1.160 6.713 0.943 0.943 460.4 471.0 1.146 6.616 0.944 0.944 183.6 192.6
M3 1.150 6.760 0.944 0.944 434.6 445.3 1.145 6.613 0.944 0.944 183.4 192.4
M4 1.151 6.773 0.944 0.944 436.1 446.8 1.151 6.653 0.944 0.943 189.4 198.3
M5 1.151 7.738 0.944 0.944 435.8 446.5 1.141 6.607 0.944 0.944 178.7 187.8
M6 1.166 6.773 0.942 0.942 477.6 488.3 1.152 6.656 0.943 0.943 190.7 199.7
M7 1.198 7.274 0.939 0.939 561.2 571.9 1.222 7.304 0.936 0.936 269.5 278.5
M8 1.150 6.750 0.944 0.944 435.0 4457 1.147 6.646 0.944 0.944 185.3 194.3
M9 1.413 8.806 0.915 0.915 1068.7 1079.4 1.467 8.844 0.908 0.908 510.5 519.5
M10 1.185 6.852 0.940 0.940 526.5 537.2 1.161 6.812 0.942 0.942 201.4 2104
M11 1.157 6.844 0.943 0.943 453.8 464.4 1.170 6.831 0.942 0.941 211.2 220.2
M12 2229 14.708 0.789 0.789 24731 2483.8 1.153 6.725 0.943 0.943 192.1 2011
M13 1.149 6.785 0.944 0.944 437.0 458.4 1.147 6.638 0.944 0.944 189.5 207.5
M14 1.149 6.753 0.944 0.944 435.5 456.9 1.137 6.593 0.945 0.945 177.7 195.7
M15 1.185 7171 0.940 0.940 532.0 553.3 1.177 7.004 0.941 0.941 2235 2415
M16 1.151 6.797 0.944 0.944 440.2 461.6 1.142 6.670 0.944 0.944 184.0 202.0
M17 1.152 6.809 0.944 0.943 443.4 464.7 1.144 6.682 0.944 0.944 185.5 203.5
M18 1.172 7.041 0.942 0.941 497.7 519.1 1.162 6.86 0.942 0.942 206.9 2249
M19 1.176 7.078 0.941 0.941 507.9 529.3 1.199 7.087 0.939 0.938 248.4 266.3
M20 1.153 6.807 0.944 0.943 447.0 468.4 1.144 6.629 0.944 0.944 186.4 204.4
M21 1.146 6.716 0.944 0.944 426.5 447.9 1.144 6.584 0.944 0.944 185.7 203.7
M22 1.157 6.883 0.943 0.943 458.2 479.6 1.152 6.767 0.943 0.943 195.5 213.4
M23 1.150 6.755 0.944 0.944 437.4 458.8 1.147 6.668 0.944 0.943 189.9 207.8
M24 1.145 6.722 0.944 0.944 425.0 446.4 1.136 6.591 0.945 0.945 176.1 194.1
L1 1.185 6.917 0.940 0.940 530.0 546.0 1.164 6.860 0.942 0.942 206.5 220.0
L2 1.423 8.915 0.914 0.914 1090.5 1101.2 1.498 8.965 0.904 0.904 538.3 547.3
L3 1.078 6.589 0.951 0.950 242.8 274.9 1.064 6.467 0.952 0.951 93.7 120.6
L4 1.285 7.927 0.930 0.930 787.9 830.6 1.339 8.019 0.924 0.923 401.6 437.6
L5 1.384 9.330 0.919 0.919 1006.2 1022.2 1.398 9.301 0.917 0.916 448.9 462.4
L6 1.673 11.431 0.881 0.881 1590.7 1606.7 1.670 11.14 0.881 0.880 684.3 697.8
L7 1.160 6.764 0.943 0.943 462.2 472.9 1.1562 6.750 0.943 0.943 191.4 200.3
L8 1.012 5.893 0.957 0.956 55.5 108.8 0.970 5.689 0.960 0.959 -20.3 24.6
L9 1.063 6.467 0.952 0.952 201.1 233.1 1.054 6.449 0.953 0.952 81.6 108.6
quadratic diameter at breast height during the growth of
M3 model M24 model stands, there is a change in the relationship between rel-
14 ative heights and relative diameters. In mature stands the
1.2 curve is more convex than in young stands.
510 Three-parameter models are more flexible than
T two-parameter models and allow for more detailed trans-
< 08 fer of dependencies. With many observations on trial plots,
06 three-parameter models give a good result. Plots of resid-
<04 uvals in the fitting and validation phase of M24 model are
o2 o2 shown in Figure 3. A large deviation in the residuals was
seen only for a few trees, which were caused by extreme
0-00‘0 05 10 15 20 0'00.0 05 10 15 20 outlier observations. QQ-plot of the standardised residu-

als showed the normal distribution pattern. This indicates
significant skewness were absent in the residuals. The lo-
cation of the residuals on the graph shows the lack of auto-
correlation. Our residual plots are consistent with general-
ised model selections in other studies (Sanchez-Gonzalez
et al. 2007, Ahmadi and Alavi 2016).

Therefore, the final generalised height-diameter mod-
el (M24) adapted to all data was:
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(0.597-00111D, )(DBH/ )7(70,112+D,0283Dq)
h=13+(H—13) <(DBH/D ) T e )
q

where:

DBH - the diameter at breast height (cm),

h — the tree height (m),

D - the quadratic diameter at breast height (cm),
H — the mean height (m).

The resulting model is continuous concerning the
quadratic diameter at breast height and average heights,
giving it an advantage over height class tables used in
Russia. Such a model gives curves of the dependence of
heights on diameters for stands of all combinations of
quadratic diameter at breast height and average heights re-
gardless of age, growing conditions, or geographical area
(Kuliesis 1989). It is essential to develop specific equations
for each species because each one has particular growth
habits. Additionally, these types of equations facilitate the
quantification of existing timber forest resources (Santia-
go-Garcia et al. 2020).

Developing a simple and accurate height-diameter
model makes it possible for model users to predict tree
heights by relying on measurements of DBH and other co-
variate predictors. They are derived from forest inventory
databases. The existing generalised height-diameter mod-
els (Kuliesis 1989, Khlyustov 2015) for the birch stands in
European Russia with the same set of variables have many
parameters. Our model with 4 evaluated parameters is of
acceptable quality. Our model will be useful for the inven-
tory crew, who may measure the heights of only a few trees
per plot and predict the heights of the remaining trees using
this model.

Conclusions

The variables diameter at breast height, quadratic
diameter at breast height, and mean height proved to be
the suitable variables to predict trees height. The models
showed a good predictive performance, and their ease of
application constitutes one of the main advantages of the
present models. Significantly, it is easily implementable in
forest inventory procedures or growth simulators. Results
show that there existed little differences between models.
The performance statistics showed that modified power
function the most suitable and recommended for predicting
the height-diameter relationships for birch trees in Europe-
an Russia. The methodology of the study allows the sim-
ilar work for tree species and forest conditions, for which
information about the nature of the relationship of height
with the diameter at breast height is incomplete or absent.
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Figure 3. Residual plots for M24 model
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