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Abstract 
In this study, an artificial neural network (ANN) model was developed to predict the gloss of thermally densified wood 

veneers. A custom application created with MATLAB codes was employed for the development of the multilayer feed-forward 
ANN model. The wood species, temperature, pressure, measurement direction, and angle of incidence were considered as the 
model inputs, while the gloss was the output of the ANN model. Model performance was evaluated by using the mean absolute 
percentage error (MAPE), the root mean square error (RMSE), and the coefficient of determination (R²). It was observed that 
the ANN model yielded very satisfactory results with acceptable deviations. The MAPE, RMSE, and R2 values of the testing 
period of the ANN model were found as 8.556%, 1.245, and 0.9814, respectively. Consequently, this study could be useful for 
the wood industry to predict the gloss with a smaller number of labour consuming experimental activities. 
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Introduction 
Wood has been widely used for exterior and interi-

or applications due to its availability, natural beauty, and 
strength (Aydin and Colakoglu 2005, Akbiyik et al. 2007, 
Scrinzi et al. 2011). However, wood is exposed to a num-
ber of detrimental factors such as humidity and ultraviolet 
radiation in exterior and interior environments (Temiz et al. 
2005). Several modification methods have been developed 
to improve the various properties of wood and to extend 
the service life of wood and wood-based products. Thermal 
and thermo-mechanical treatments are some modification 
methods (Herrera et al. 2015, Pelit et al. 2015, Percin et 
al. 2015). Heating the wood at high temperatures reduces 
shrinking-swelling characteristics and equilibrium mois-
ture content, and increases the weather resistance of the 
final product (Yildiz et al. 2006, Kocaefe et al. 2008). Such 
treatment also causes certain changes in the surface rough-
ness, colour, and gloss of wood. 

Gloss is one of the most important criteria in de-
termining the quality of wood products (Slabejová et al. 
2016). High gloss surfaces have gained importance in the 
furniture industry. Due to the increasing demand for high 
gloss surfaces, it is important to make reliable statements 
about the gloss of wood (Ettwein et al. 2017). There are 

many factors (such as temperature, grit size, pressure, and 
varnish type) influencing the gloss of wood, and these fac-
tors interact with each other (Aksoy et al. 2011, Bekhta et 
al. 2014, Pelit et al. 2015, Turkoglu et al. 2015, Gupta et al. 
2016, Salca et al. 2016). 

In recent years, some studies have focused on evaluat-
ing the influences of various factors on the gloss of wood. 
Aksoy et al. (2011) investigated the effect of heat treatment 
on gloss. They observed that heat treatment decreased the 
gloss values of wood. This observation was also confirmed 
by Gurleyen et al. (2017). Karamanoğlu and Akyıldız (2013) 
claimed that long-term weathering increased the gloss values 
of heat-treated wood. Baysal et al. (2014) investigated the 
effect of artificial weathering on the surface roughness, co-
lour, and gloss of heat-treated wood. They reported that 
artificial weathering caused a decrease in gloss values. Bu-
dakçı and Karamanoğlu (2014) noted that hardness, gloss, 
and colour changes caused by weathering conditions can 
be reduced by the bleaching procedure. Turkoglu et al. 
(2015) studied the influence of natural weathering on the 
surface hardness and gloss of wood. The results of their 
study showed that natural weathering caused a decrease in 
the gloss values of wood specimens. Salca et al. (2016) 
found that finer grit sizes increased surface glossiness. 
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The investigation of the influence of each factor on 
gloss requires many experimental studies. However, extra 
experiments cause high costs and the loss of much time 
and energy. Various methods are available to predict the 
gloss of wood without spending much time, costs, and en-
ergy. The artificial neural networks (ANNs), the response 
surface methodology (RSM), the support vector machine 
(SVM), and the multiple linear regression (MLR) are some 
prediction methods. The ANN approach has become in-
creasingly popular over the past decade. It deals with com-
plex problems, which are difficult to solve by conventional 
statistical techniques. Furthermore, ANNs can define com-
plicated and nonlinear relationships between inputs and 
outputs without any prior assumptions (Sun et al. 2010, 
Barelli et al. 2018). Therefore, we have used the ANN ap-
proach in our research. 

The ANN approach has been widely employed in 
wood science to model input-output relationships. ANN 
applications to wood science include analyzing moisture in 
wood (Avramidis and Wu 2007), predicting fracture tough-
ness (Samarasinghe et al. 2007), classifying wood veneer 
defects (Castellani and Rowlands 2008), wood recognition 
(Khalid et al. 2008), optimization of process parameters 
in oriented strand board manufacturing (Özşahin 2012, 
Ozsahin 2013), predicting the bonding strength of wood 
joints (Bardak et al. 2016), determination of optimum pow-
er consumption in wood machining (Tiryaki et al. 2016), 
prediction of formaldehyde emission (Akyüz et al. 2017), 
and prediction of surface roughness and adhesion strength 
of wood (Özşahin and Singer 2019). These studies have 
shown that the ANN approach produces highly successful 
results. 

However, the current literature has a gap in predict-
ing the gloss of wood by the ANN approach. Therefore, 
the objectives of our study are to develop an ANN mod-
el for modelling the effects of wood species, temperature, 
pressure, measurement direction, and angle of incidence 
on gloss and to present a road map for the wood industry 
seeking to enhance the quality of products. 

Materials and methods 

Data set 
The data used in this study were taken from Bekhta 

et al. (2014). Some experimental details about their study 
can be briefly explained as follows. Alder (Alnus glutinosa 
Goertn.), beech (Fagus sylvatica L.), birch (Betula verru-
cosa Ehrh.), and pine (Pinus sylvestris L.) were selected as 
the materials of the experiments. Rotary cut veneer sheets 
were logged at the Sklejka-Multi S.A. plywood company 
in Bydgoszcz, Poland. Defect-free veneer sheets with di-
mensions of 300×300×1.5 mm3 were then transported to 
the laboratory. Tangential sheets of veneer were cut into 
140×100 mm2 rectangular pieces. The whole test speci-
mens were conditioned at 20°C and 65% relative humid-
ity. Thermo-mechanical densification was applied to the 

wood specimens for nine combinations of three different 
temperatures (100, 150, and 200°C) and three different 
pressures (4, 8, and 12 MPa). The densification time was 
4 min. The gloss of each veneer surface was measured at 
three different angles (20°, 60°, and 85°) and two different 
directions (across (┴) the grain and along (‖) the grain). 
The gloss values were obtained using a PICO GLOSS 503 
photoelectric apparatus. The measurements were carried 
out according to DIN 67530 (1982) and ISO 2813 (1994). 

Artificial neural network approach 
ANN is a data modelling tool that offers effective 

solutions to deal with complex problems. The ANN ap-
proach has been widely employed in many applications 
such as prediction, data sorting, pattern detection, optimi-
zation, clustering, and simulation due to its ability in learn-
ing complex and nonlinear relationships among variables 
(Yadav and Chandel 2014). The ANN approach learns 
these relationships from the previously recorded data (Bar-
dak et al. 2016). 

The most widely used ANN type for process model-
ling and prediction purposes is the multilayer perceptron 
(MLP). The MLP structure consists of three different lay-
ers: the input layer, where the data are introduced to the 
network, the hidden layer(s), where the information com-
ing from the input layer is processed, and the output layer, 
where the results of the network are produced. Figure 1 
depicts a typical example of the MLP structure (Ozsahin 
2013). 

Data processing is performed with neurons, which are 
placed in the layers of the MLP network. Input neurons and 
output neurons represent inputs and outputs, respectively. 
However, hidden neurons vary depending on the complex-
ity level of the handled problem (Nastos et al. 2013). Too 
few hidden neurons may hinder the learning process. On 
the other hand, a large number of hidden neurons can lead 
to overfitting (Quintana et al. 2011). It is very difficult to 
detect the most suitable neural network, even for an expe-
rienced user (Ma et al. 2012). 

Each neuron is connected to other neurons by commu-
nication links (connections) (Özşahin 2012). An artificial 
neuron sums the bias and weighted inputs, processes the 
sum with an activation function, and transmits the result 

Figure 1. A typical multi-layered ANN structure 
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to the next layer (Yalçin et al. 2015). Figure 2 illustrates 
the process described above. This process is summarized 
in Equations (1) and (2) (Ozsahin 2013). 
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where, xi is the input signal, wij is the weight between the ith neuron and the jth neuron, θj is the 

bias (threshold), netj is the net input of the jth neuron, f(.) is one of the activation functions, and 

yj is the output of the jth neuron.  

Neural networks must be trained with known input-output data. During the training 

process, the values of weights and biases are changed to obtain the best prediction results 

(Haghdadi et al. 2013). When the error reached a determined value or the specified number of 

iterations is reached, the training of ANNs is finished (Ertunc et al. 2013). If the model responds 

correctly to input values that are not employed in training, the weights and biases of the trained 

network are saved. These weights and biases can be used to predict outputs for new input 

vectors (Yildirim et al. 2011).  

 

Artificial neural network analysis  

The gloss of thermally densified wood veneers was modelled using the ANN approach. 

For this, the wood species, temperature, pressure, measurement direction, and angle of 

incidence were considered as the model inputs, while the gloss was the output of the ANN 

model. The training and testing procedures were performed using MATLAB® (MathWorks 

2015a). Figure 3 shows the steps of this study based on the ANN approach (Canakci et al. 

2015).  

The experimental data (216 samples) were classified into two different groups: training 

and testing. 162 data samples (75% of total data samples) were randomly selected for the 

training process and 54 data samples (25% of total data samples) were employed to evaluate 

the generalization ability of the ANN model. The data sets are presented in Table 1. 

The network parameters such as activation functions, learning rule, momentum, and the 

number of hidden layers and neurons must be efficiently determined (Tiryaki et al. 2017). 

Different ANN structures and parameters were tried to minimize the difference between the 

measured and predicted values. The ANN model providing the closest values to the 

experimental results was chosen to make predictions. The architecture of the selected ANN 

model is presented in Figure 4.  
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2013). If the model responds correctly to input values that 
are not employed in training, the weights and biases of the 
trained network are saved. These weights and biases can 
be used to predict outputs for new input vectors (Yildirim 
et al. 2011). 

Artificial neural network analysis 
The gloss of thermally densified wood veneers was 

modelled using the ANN approach. For this, the wood 
species, temperature, pressure, measurement direction, 
and angle of incidence were considered as the model in-
puts, while the gloss was the output of the ANN model. 
The training and testing procedures were performed using 
MATLAB® (MathWorks 2015a). Figure 3 shows the steps 
of this study based on the ANN approach (Canakci et al. 
2015). 

The experimental data (216 samples) were classified 
into two different groups: training and testing. 162 data 
samples (75% of total data samples) were randomly select-
ed for the training process and 54 data samples (25% of 
total data samples) were employed to evaluate the gener-
alization ability of the ANN model. The data sets are pre-
sented in Table 1.

The network parameters such as activation functions, 
learning rule, momentum, and the number of hidden lay-
ers and neurons must be efficiently determined (Tiryaki et 

al. 2017). Different ANN structures and parameters were 
tried to minimize the difference between the measured 
and predicted values. The ANN model providing the clos-
est values to the experimental results was chosen to make 
predictions. The architecture of the selected ANN model is 
presented in Figure 4. 

The number of input and output neurons corresponds 
to the number of input and output variables, respectively 
(Akyüz 2019). Therefore, 1 and 5 neurons were devoted 
to the output and input layers, respectively. The number 
of hidden neurons was determined by the trial-and-error 
approach. 7 and 6 neurons were devoted to the first and 
second hidden layers, respectively. The number of the con-
nections in the ANN model was lower than the number of 
the data used for training. Hence, the proposed model can 
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In modelling, a feed-forward backpropagation neural 
network was used. The activation functions were select-

Figure 2. General functioning of an artificial neuron 
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where Xnorm is the normalized value, X is the real value, and 
Xmin and Xmax are the minimum and maximum values of X, 
respectively. 

To compare the established models, the mean abso-
lute percentage error (MAPE), the root mean square error 
(RMSE), and the coefficient of determination (R2) were 
used. The MAPE, RMSE, and R2 values were calculated 
by using the following equations: 
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where, t ̅is the average of predicted values. 

Results 
The effects of wood species, temperature, pressure, measurement direction, and angle of 

incidence on gloss were modelled by employing the ANN approach. The ANN model was 

designed with 5 neurons in the input layer, 7 neurons in the first hidden layer, 6 neurons in the 

second hidden layer, and 1 neuron in the output layer.  

As stated previously, the MAPE, RMSE, and R2 criteria were used to compare the 

performance of the established models and to determine the best model. The values of MAPE, 

RMSE, and R2 were calculated using Equations (5), (6), and (7), respectively. Table 2 shows 

the MAPE, RMSE, and R2 statistics calculated for the ANN model.  

MAPE is one of the most important performance criteria. In the literature, many 

researchers have determined the robustness of different models by using this performance 

criterion (Bardak et al. 2016, Tiryaki et al. 2016, Akyüz et al. 2017). The MAPE values were 

2.856% for the training set and 8.556% for the testing set. Several researchers reported that 

model performance is accepted as excellent if MAPE ≤ 10% (Chang et al. 2007, Aydin et al. 

2014, Yadav and Nath 2017). Accordingly, the prediction ability of the ANN model can be 

accepted as excellent since its MAPE value is lower from 10%.  

From Table 2, it is possible to see that the RMSE values are 0.097 and 1.245 for the 

training and testing sets, respectively. Low RMSE values indicate a well-fitting model 

(Canakci et al. 2015, Bardak et al. 2016). Therefore, it can be said that the proposed model is 

successful in terms of the RMSE criterion.  

R2 is an indicator of the strength of the relationship between observed and predicted 

values. It must be close to 1 for an excellent fit (Sanusi et al. 2016). The regression analysis 

was carried out to calculate the R2 values of the proposed model. The predicted outputs were 

graphically correlated with the experimental results as in Figure 5. According to this figure, the 

 ,               (5)

7 

 

MAPE �  1
N
����ti � tdi

ti
��

N

i=1

� � 100                                          (5) 

RMSE � �1
N
� (ti � tdi)2
N

i=1

                                                          (6) 

R2 � 1 �∑ (ti � tdi)2N
i=1

∑ (ti � t)̅2N
i=1

                                                      (7) 

 

where, t ̅is the average of predicted values. 

Results 
The effects of wood species, temperature, pressure, measurement direction, and angle of 

incidence on gloss were modelled by employing the ANN approach. The ANN model was 

designed with 5 neurons in the input layer, 7 neurons in the first hidden layer, 6 neurons in the 

second hidden layer, and 1 neuron in the output layer.  

As stated previously, the MAPE, RMSE, and R2 criteria were used to compare the 

performance of the established models and to determine the best model. The values of MAPE, 

RMSE, and R2 were calculated using Equations (5), (6), and (7), respectively. Table 2 shows 

the MAPE, RMSE, and R2 statistics calculated for the ANN model.  

MAPE is one of the most important performance criteria. In the literature, many 

researchers have determined the robustness of different models by using this performance 

criterion (Bardak et al. 2016, Tiryaki et al. 2016, Akyüz et al. 2017). The MAPE values were 

2.856% for the training set and 8.556% for the testing set. Several researchers reported that 

model performance is accepted as excellent if MAPE ≤ 10% (Chang et al. 2007, Aydin et al. 

2014, Yadav and Nath 2017). Accordingly, the prediction ability of the ANN model can be 

accepted as excellent since its MAPE value is lower from 10%.  

From Table 2, it is possible to see that the RMSE values are 0.097 and 1.245 for the 

training and testing sets, respectively. Low RMSE values indicate a well-fitting model 

(Canakci et al. 2015, Bardak et al. 2016). Therefore, it can be said that the proposed model is 

successful in terms of the RMSE criterion.  

R2 is an indicator of the strength of the relationship between observed and predicted 

values. It must be close to 1 for an excellent fit (Sanusi et al. 2016). The regression analysis 

was carried out to calculate the R2 values of the proposed model. The predicted outputs were 

graphically correlated with the experimental results as in Figure 5. According to this figure, the 

 ,                       (6)

R2

7 

 

MAPE �  1
N
����ti � tdi

ti
��

N

i=1

� � 100                                          (5) 

RMSE � �1
N
� (ti � tdi)2
N

i=1

                                                          (6) 

R2 � 1 �∑ (ti � tdi)2N
i=1

∑ (ti � t)̅2N
i=1

                                                      (7) 

 

where, t ̅is the average of predicted values. 

Results 
The effects of wood species, temperature, pressure, measurement direction, and angle of 

incidence on gloss were modelled by employing the ANN approach. The ANN model was 

designed with 5 neurons in the input layer, 7 neurons in the first hidden layer, 6 neurons in the 

second hidden layer, and 1 neuron in the output layer.  

As stated previously, the MAPE, RMSE, and R2 criteria were used to compare the 

performance of the established models and to determine the best model. The values of MAPE, 

RMSE, and R2 were calculated using Equations (5), (6), and (7), respectively. Table 2 shows 

the MAPE, RMSE, and R2 statistics calculated for the ANN model.  

MAPE is one of the most important performance criteria. In the literature, many 

researchers have determined the robustness of different models by using this performance 

criterion (Bardak et al. 2016, Tiryaki et al. 2016, Akyüz et al. 2017). The MAPE values were 

2.856% for the training set and 8.556% for the testing set. Several researchers reported that 

model performance is accepted as excellent if MAPE ≤ 10% (Chang et al. 2007, Aydin et al. 

2014, Yadav and Nath 2017). Accordingly, the prediction ability of the ANN model can be 

accepted as excellent since its MAPE value is lower from 10%.  

From Table 2, it is possible to see that the RMSE values are 0.097 and 1.245 for the 

training and testing sets, respectively. Low RMSE values indicate a well-fitting model 

(Canakci et al. 2015, Bardak et al. 2016). Therefore, it can be said that the proposed model is 

successful in terms of the RMSE criterion.  

R2 is an indicator of the strength of the relationship between observed and predicted 

values. It must be close to 1 for an excellent fit (Sanusi et al. 2016). The regression analysis 

was carried out to calculate the R2 values of the proposed model. The predicted outputs were 

graphically correlated with the experimental results as in Figure 5. According to this figure, the 

 ,                         (7)

where, 

7 

 t ̅is the average of predicted values. 

Results 
The effects of wood species, temperature, pressure, measurement direction, and angle of 

incidence on gloss were modelled by employing the ANN approach. The ANN model was 

designed with 5 neurons in the input layer, 7 neurons in the first hidden layer, 6 neurons in the 

second hidden layer, and 1 neuron in the output layer.  

As stated previously, the MAPE, RMSE, and R2 criteria were used to compare the 

performance of the established models and to determine the best model. The values of MAPE, 

RMSE, and R2 were calculated using Equations (5), (6), and (7), respectively. Table 2 shows 

the MAPE, RMSE, and R2 statistics calculated for the ANN model.  

MAPE is one of the most important performance criteria. In the literature, many 

researchers have determined the robustness of different models by using this performance 

criterion (Bardak et al. 2016, Tiryaki et al. 2016, Akyüz et al. 2017). The MAPE values were 

2.856% for the training set and 8.556% for the testing set. Several researchers reported that 

model performance is accepted as excellent if MAPE ≤ 10% (Chang et al. 2007, Aydin et al. 

2014, Yadav and Nath 2017). Accordingly, the prediction ability of the ANN model can be 

accepted as excellent since its MAPE value is lower from 10%.  

From Table 2, it is possible to see that the RMSE values are 0.097 and 1.245 for the 

training and testing sets, respectively. Low RMSE values indicate a well-fitting model 

(Canakci et al. 2015, Bardak et al. 2016). Therefore, it can be said that the proposed model is 

successful in terms of the RMSE criterion.  

R2 is an indicator of the strength of the relationship between observed and predicted 

values. It must be close to 1 for an excellent fit (Sanusi et al. 2016). The regression analysis 

was carried out to calculate the R2 values of the proposed model. The predicted outputs were 

graphically correlated with the experimental results as in Figure 5. According to this figure, the 

R2 values are 0.9997 and 0.9814 for the training and testing sets, respectively. The R2 value in 

the testing set shows that the established network can explain at least 98.14% of the actual data 

of gloss. This result encourages the applicability of neural networks in predicting the gloss of 

thermally densified wood veneers.  

The comparative plots of the measured and predicted values are presented in Figure 6. In 

most cases, the predicted values are very close to the experimental results; however, some 

values are not as close as others. This is attributed to the errors caused by the materials, 

 is the average of predicted values.

ed as the hyperbolic tangent sigmoid function (tansig) and 
the linear transfer function (purelin). The Levenberg-Mar-
quardt algorithm (trainlm) was employed for training, the 
gradient descent with a momentum backpropagation algo-
rithm (traingdm) was considered as the learning rule, and 
the mean square error (MSE) [Equation (3)] was used as 
the performance function.

6 

 

MSE = 
1
N
� (ti � tdi)2                                                             (3)

N

i=1

 

 

where, ti refers to the actual value, tdi refers to the model output, and N refers to the number of 

measurements.  

As the tansig function was used, the original data set was scaled to the range [–1, 1]. The 

output values of the ANN model were converted back to the real values by applying a reverse 

normalizing process. The normalization was performed using the following equation: 

 

Xnorm = 2 � X � Xmin 
Xmax � Xmin

� 1                                                  (4) 

 

where Xnorm is the normalized value, X is the real value, and Xmin and Xmax are the minimum and 

maximum values of X, respectively.  

To compare the established models, the mean absolute percentage error (MAPE), the root 

mean square error (RMSE), and the coefficient of determination (R2) were used. The MAPE, 

RMSE, and R2 values were calculated by using the following equations:  

MAPE �  1
N
����ti � tdi

ti
��

N

i=1

� � 100                                          (5) 

RMSE � �1
N
� (ti � tdi)2

N

i=1

                                                          (6) 

R2 � 1 � ∑ (ti � tdi)2N
i=1

∑ (ti � t)̅2N
i=1

                                                      (7) 

 

where, t ̅is the average of predicted values. 

Results 
The effects of wood species, temperature, pressure, measurement direction, and angle of 

incidence on gloss were modelled by employing the ANN approach. The ANN model was 

designed with 5 neurons in the input layer, 7 neurons in the first hidden layer, 6 neurons in the 

second hidden layer, and 1 neuron in the output layer.  

As stated previously, the MAPE, RMSE, and R2 criteria were used to compare the 

performance of the established models and to determine the best model. The values of MAPE, 

 ,                                (3)

where, ti refers to the actual value, tdi refers to the model 
output, and N refers to the number of measurements. 

As the tansig function was used, the original data set 
was scaled to the range [–1, 1]. The output values of the 
ANN model were converted back to the real values by ap-
plying a reverse normalizing process. The normalization 
was performed using the following equation: 

7 

 

Xnorm = 2 � X � Xmin 
Xmax � Xmin

� 1                                                  (4) 

 

where Xnorm is the normalized value, X is the real value, and Xmin and Xmax are the minimum and 

maximum values of X, respectively.  

To compare the established models, the mean absolute percentage error (MAPE), the root 

mean square error (RMSE), and the coefficient of determination (R2) were used. The MAPE, 

RMSE, and R2 values were calculated by using the following equations:  

MAPE �  1
N
����ti � tdi

ti
��

N

i=1

� � 100                                          (5) 

RMSE � �1
N
� (ti � tdi)2

N

i=1

                                                          (6) 

R2 � 1 � ∑ (ti � tdi)2N
i=1

∑ (ti � t)̅2N
i=1

                                                      (7) 

 

where, t ̅is the average of predicted values. 

Results 
The effects of wood species, temperature, pressure, measurement direction, and angle of 

incidence on gloss were modelled by employing the ANN approach. The ANN model was 

designed with 5 neurons in the input layer, 7 neurons in the first hidden layer, 6 neurons in the 

second hidden layer, and 1 neuron in the output layer.  

As stated previously, the MAPE, RMSE, and R2 criteria were used to compare the 

performance of the established models and to determine the best model. The values of MAPE, 

RMSE, and R2 were calculated using Equations (5), (6), and (7), respectively. Table 2 shows 

the MAPE, RMSE, and R2 statistics calculated for the ANN model.  

MAPE is one of the most important performance criteria. In the literature, many 

researchers have determined the robustness of different models by using this performance 

criterion (Bardak et al. 2016, Tiryaki et al. 2016, Akyüz et al. 2017). The MAPE values were 

2.856% for the training set and 8.556% for the testing set. Several researchers reported that 

model performance is accepted as excellent if MAPE ≤ 10% (Chang et al. 2007, Aydin et al. 

2014, Yadav and Nath 2017). Accordingly, the prediction ability of the ANN model can be 

accepted as excellent since its MAPE value is lower from 10%.  

 ,                    (4)

Wood 
spe-
cies 

Densification 
parameters

Angle of incidence (°)
Gloss measured across (┴) the grain Gloss measured along (‖) the grain

Tem-
pera-
ture 
(°C)

Pres-
sure 

(MPa)

20 60 85 20 60 85

aa pa ea a p e a p e a p e a p e a p e

Alder 100 4 1.1 1.05 4.78 3.9 3.82 1.92 5.2 5.82 –11.96 1.2 1.05 12.73 5.4 5.61 –3.82 10.5 10.49 0.11
Alder 100 8 1.2 1.11 7.58 4.5 4.51 –0.25 5.7 5.76 –1.03 1.3 1.15 11.78 6.0 6.24 –3.96 12.6 12.60 –0.02
Alder 100 12 1.2 1.23 –2.65 5.1 6.07 –19.06 5.7 5.69 0.10 1.3 1.34 –3.43 6.6 6.57 0.46 14.2 14.37 –1.17
Alder 150 4 1.1 1.07 2.92 4.5 4.61 –2.40 7.3 7.33 –0.46 1.2 1.09 9.54 6.4 6.93 –8.31 16.9 16.92 –0.10
Alder 150 8 1.3 1.14 12.02 5.5 5.43 1.34 10.8 8.87 17.82 1.4 1.22 13.03 7.9 7.71 2.40 18.1 18.05 0.26
Alder 150 12 1.3 1.30 0.23 5.4 5.20 3.65 8.2 7.95 3.11 1.4 1.46 –4.07 7.5 7.62 –1.66 16.4 16.59 –1.15
Alder 200 4 1.1 1.07 2.59 4.9 5.60 –14.32 12.0 12.01 –0.12 1.2 1.12 6.61 7.5 7.44 0.73 21.2 21.18 0.08
Alder 200 8 1.2 1.17 2.10 7.0 7.14 –2.00 23.8 23.81 –0.04 1.4 1.28 8.61 10.7 8.61 19.52 31.5 31.98 –1.53
Alder 200 12 1.5 1.47 1.76 8.3 8.28 0.20 24.3 25.26 –3.96 1.7 1.62 4.54 12.3 12.29 0.07 32.2 32.16 0.14
Beech 100 4 0.9 1.03 –14.79 2.8 2.85 –1.76 3.3 3.32 –0.58 1.1 1.03 6.32 4.0 3.69 7.86 5.5 6.61 –20.23
Beech 100 8 1.0 1.07 –7.07 3.5 3.35 4.26 5.4 5.20 3.67 1.1 1.10 0.35 4.5 4.50 –0.01 8.9 8.90 –0.01
Beech 100 12 1.1 1.14 –3.77 4.0 4.04 –1.04 5.5 5.23 4.85 1.1 1.22 –10.78 4.7 4.60 2.19 12.0 11.84 1.29
Beech 150 4 1.0 1.04 –4.27 3.2 3.12 2.46 4.8 4.75 1.03 1.0 1.05 –4.85 4.2 4.43 –5.46 7.3 7.44 –1.90
Beech 150 8 1.1 1.09 1.13 4.1 3.68 10.12 8.1 8.12 –0.31 1.1 1.13 –2.81 5.5 5.45 0.93 12.7 12.70 0.00
Beech 150 12 1.1 1.17 –6.37 4.2 4.05 3.64 7.4 7.68 –3.78 1.1 1.28 –16.70 5.5 5.69 –3.47 14.1 15.18 –7.69
Beech 200 4 0.7 1.04 –48.60 3.3 3.37 –2.27 7.9 6.53 17.39 0.8 1.07 –33.34 4.7 4.65 1.15 13.9 13.79 0.76
Beech 200 8 0.9 1.09 –21.07 4.4 4.39 0.33 8.8 8.70 1.14 0.9 1.16 –29.04 6.0 5.97 0.45 17.3 17.28 0.11
Beech 200 12 1.0 1.21 –20.75 5.3 5.38 –1.57 12.8 12.85 –0.35 1.0 1.36 –36.07 6.8 6.96 –2.38 21.7 21.72 –0.09
Birch 100 4 1.4 1.23 11.97 4.3 4.32 –0.48 4.2 3.90 7.04 1.5 1.37 8.87 6.2 6.31 –1.78 7.7 7.68 0.24
Birch 100 8 1.5 1.33 11.36 5.5 5.31 3.47 5.8 5.77 0.55 1.6 1.50 6.28 7.3 7.62 –4.42 14.7 11.08 24.62
Birch 100 12 1.5 1.48 1.14 5.8 5.88 –1.30 6.7 6.97 –4.03 1.7 1.68 1.01 8.3 8.10 2.41 17.3 17.33 –0.20
Birch 150 4 1.3 1.25 4.06 4.5 4.87 –8.29 7.8 7.60 2.51 1.5 1.39 7.48 7.0 7.15 –2.09 12.7 11.29 11.09
Birch 150 8 1.6 1.36 15.12 6.3 5.97 5.25 13.9 14.03 –0.95 1.7 1.53 9.99 9.1 8.62 5.26 20.4 20.40 0.02
Birch 150 12 1.7 1.53 9.79 6.8 6.79 0.19 17.2 17.10 0.57 1.9 1.70 10.44 10.2 10.13 0.67 25.7 25.68 0.09
Birch 200 4 1.2 1.24 –3.40 5.1 5.01 1.78 12.1 12.04 0.46 1.3 1.42 –8.91 8.0 7.60 5.04 19.4 18.39 5.22
Birch 200 8 1.2 1.35 –12.82 6.5 6.77 –4.12 15.8 17.15 –8.54 1.4 1.59 –13.78 9.9 10.07 –1.71 24.7 24.77 –0.27
Birch 200 12 1.7 1.61 5.06 8.5 8.50 –0.01 23.1 23.09 0.04 1.9 1.92 –0.95 13.6 13.55 0.39 37.2 37.20 0.01
Pine 100 4 1.6 1.64 –2.71 6.7 6.95 –3.68 9.0 9.02 –0.25 1.8 1.81 –0.53 9.8 9.80 0.03 18.6 18.59 0.07
Pine 100 8 1.7 1.73 –1.94 7.4 7.59 –2.52 7.6 9.03 –18.87 1.9 1.86 1.88 10.5 10.06 4.21 17.9 17.90 0.01
Pine 100 12 1.8 1.86 –3.08 7.8 7.84 –0.54 9.6 9.58 0.16 1.8 1.94 –7.82 10.0 10.08 –0.78 18.3 18.26 0.21
Pine 150 4 1.6 1.67 –4.15 6.6 7.57 –14.63 10.3 10.30 0.01 1.8 1.82 –0.92 9.9 10.08 –1.86 19.3 19.32 –0.10
Pine 150 8 1.9 1.77 6.81 8.7 8.29 4.71 18.7 18.70 –0.02 2.1 1.86 11.24 13.0 10.93 15.92 27.5 26.99 1.86
Pine 150 12 1.7 1.91 –12.61 8.3 8.63 –3.96 21.5 27.05 –25.80 1.9 1.91 –0.73 11.9 11.94 –0.33 29.8 29.86 –0.22
Pine 200 4 1.6 1.67 –4.42 7.9 7.76 1.80 21.4 21.41 –0.04 1.7 1.84 –8.14 11.0 11.01 –0.07 27.1 27.13 –0.13
Pine 200 8 1.6 1.77 –10.47 8.9 9.70 –8.93 29.4 29.43 –0.12 1.8 1.92 –6.58 13.3 13.30 0.00 35.3 35.25 0.15
Pine 200 12 2.2 1.99 9.76 11.5 11.47 0.25 32.3 32.29 0.03 2.3 2.10 8.77 16.3 16.59 –1.81 39.5 40.91 –3.57

Table 1. Measured and predicted gloss values and their percentage errors 

Note: bold values – testing data, the other values: training data;
a a, p, and e stand for actual values, predicted values, and percentage errors, respectively.
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Results 
The effects of wood species, temperature, pres-

sure, measurement direction, and angle of incidence 
on gloss were modelled by employing the ANN ap-
proach. The ANN model was designed with 5 neurons 
in the input layer, 7 neurons in the first hidden layer, 6 
neurons in the second hidden layer, and 1 neuron in the  
output layer. 

As stated previously, the MAPE, RMSE, and R2 
criteria were used to compare the performance of the es-
tablished models and to determine the best model. The 
values of MAPE, RMSE, and R2 were calculated using 
Equations (5), (6), and (7), respectively. Table 2 shows 
the MAPE, RMSE, and R2 statistics calculated for the  
ANN model. 

MAPE is one of the most important performance crite-
ria. In the literature, many researchers have determined the 
robustness of different models by using this performance 
criterion (Bardak et al. 2016, Tiryaki et al. 2016, Akyüz et 
al. 2017). The MAPE values were 2.856% for the training 
set and 8.556% for the testing set. Several researchers re-
ported that model performance is accepted as excellent if 
MAPE ≤ 10% (Chang et al. 2007, Aydin et al. 2014, Yadav 
and Nath 2017). Accordingly, the prediction ability of the 
ANN model can be accepted as excellent since its MAPE 
value is lower from 10%. 

From Table 2, it is possible to see that the RMSE val-
ues are 0.097 and 1.245 for the training and testing sets, re-
spectively. Low RMSE values indicate a well-fitting model 
(Canakci et al. 2015, Bardak et al. 2016). Therefore, it can 
be said that the proposed model is successful in terms of 
the RMSE criterion. 

R2 is an indicator of the strength of the relationship 
between observed and predicted values. It must be close 
to 1 for an excellent fit (Sanusi et al. 2016). The regression 
analysis was carried out to calculate the R2 values of the 
proposed model. The predicted outputs were graphically 
correlated with the experimental results as in Figure 5. Ac-
cording to this figure, the R2 values are 0.9997 and 0.9814 
for the training and testing sets, respectively. The R2 val-
ue in the testing set shows that the established network 
can explain at least 98.14% of the actual data of gloss. 
This result encourages the applicability of neural net-
works in predicting the gloss of thermally densified wood  
veneers. 

The comparative plots of the measured and pre-
dicted values are presented in Figure 6. In most cases, 
the predicted values are very close to the experimental 
results; however, some values are not as close as oth-
ers. This is attributed to the errors caused by the ma-
terials, measurements, and process parameters. These 
errors can be neglected because the learning level of 
the ANN model is high (Özşahin 2012, Canakci et  
al. 2013). 

Data set
Performance criterion

MAPE RMSE R2

Training 2.856 0.097 0.9997
Testing 8.556 1.245 0.9814

Table 2. Results of the performance criteria used in predicting 
gloss 

Figure 5. The relationship between the measured and predicted 
values: (a) the training data set and (b) the testing data set
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Neural network models can compute intermediate 
values for optimization studies. Namely, the untested ex-
perimental results can be easily predicted by employing 
the ANN approach. All outputs of the impacts of process 
parameters on gloss can be predicted for numerous com-
binations. So, the intermediate gloss values not obtained 
from the experimental study were determined by the ANN 
model for different temperatures and pressures. The tem-
perature and pressure values giving the highest gloss val-
ues according to wood species, measurement direction, 
and angle of incidence (85°) are given in Table 3. Based 
on the findings of this study, it can be said that the gloss of 
wooden materials increases with increasing of temperature 
and pressure. 
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Discussion and conclusions 

The obtained result regarding the gloss change was 
also reported by several researchers (Lamason and Gong 
2007, Pelit et al. 2015). After the densification process, 
wood may have high gloss surface. This can be caused by 
decreasing roughness values and increasing beam reflec-
tion of surfaces (Pelit et al. 2015, Bekhta et al. 2018). 

The determination of suitable densification conditions 
is very significant to achieve value-added products and to 
remain more competitive in the market. In this perspective, 
the present optimization study provides useful information 
to improve the aesthetic appearance of the final product. 
The ANN approach has enabled the prediction of unknown 
data of gloss within acceptable error margins using known 
data of gloss. The findings obtained in this study may supply 
flexibility to producers to decide densification conditions. 

The use of the ANN approach for modeling the effects 
of wood species, temperature, pressure, measurement di-
rection, and angle of incidence on gloss has been studied. 
A multilayer neural network was developed based on the 
data obtained from the literature. The following conclu-
sions could be drawn from the study:
1. The ANN model with the 5-7-6-1 structure successfully 

captured the relationship between the input and output 
variables. The predicted values showed a close match 
with the measured values. 

2. The MAPE, RMSE, and R2 values of the testing peri-
od of the ANN model were found as 8.556, 1.245, and 
0.9814%, respectively. Based on the high correlation and 
low errors between the actual and predicted values, it can 
be said that the developed model could provide accurate 
and acceptable results. 

3. The intermediate values not obtained from the experi-
mental study were predicted by the designed ANN mod-
el. It was observed that the gloss of thermally densified 
wood veneers increased with increasing of temperature 
and pressure when the other variables were fixed. 

4. The ANN approach was proved to be a useful tool in 
characterizing the effects of wood species, temperature, 
pressure, measurement direction, and angle of incidence 
on gloss. The proposed model is reliable and easily ac-
cessible for different densification conditions. The de-
sired values of gloss can be predicted by the ANN ap-
proach instead of carrying out full experimental studies. 
Thus, it is possible to reduce the experimental time and 
costs. 

5. In further research, the ANN approach can be used to 
predict the gloss of different wooden materials. 

Figure 6. The comparison of the 
measured and predicted values: 
(a)  the training data set and 
(b)  the testing data set Specimens
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Wood 
spe-
cies

Measurement 
direction

Tem-
perature 

(°C)

Pres-
sure 

(MPa)
Gloss

Alder across (┴) the grain 200 9-12 25.262-25.808
along (‖) the grain 200 9-12 32.156-32.316

Beech across (┴) the grain 190-200 11-12 11.102-12.845
along (‖) the grain 195-200 12 19.824-21.718

Birch across (┴) the grain 195-200 12 21.277-23.090
along (‖) the grain 195-200 12 34.750-37.195

Pine across (┴) the grain 175-180 11-12 34.193-34.504
along (‖) the grain 200 11-12 39.983-40.910

Table 3. Optimization of gloss according to different densifica-
tion conditions 
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